首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mosquito immunity against Plasmodium   总被引:6,自引:0,他引:6  
Understanding the molecular mechanisms of the innate immune responses of Anopheles gambiae against Plasmodium parasites is of great importance for current efforts to develop novel strategies for malaria disease control. The parasite undergoes substantial stage-specific losses during its development in the mosquito, which in some cases lead to complete refractoriness of the mosquito against the parasite. The underlying genetics of refractoriness are complex and multifactorial. Completion of the genome sequence of An. gambiae 2 years ago, together with the development of DNA microarrays in this species and the extension of the RNAi technique to adult mosquitoes, has allowed comparative and functional genomic approaches of the mosquito innate immune system. A variety of factors were shown to negatively affect the development of Plasmodium parasites in the mosquito, in some cases leading to complete transmission blockage. In addition, mosquito factors have been identified that play positive roles and are required for successful transmission of the parasite. These findings indicate a highly complex interplay between parasite and vector. Research is continuing to identify new factors involved in this interaction and to decipher the interplay of these molecules and their regulation.  相似文献   

2.
Malaria, a disease that infects 300 million people throughout the world and kills more than a million people, mostly children in sub-Saharan Africa, involves three organisms. The human host where the disease is seen, the protozoan Plasmodium parasite and the mosquito. The parasite is transmitted to humans only by the mosquito vector, which in sub-Saharan regions is generally Anopheles gambiae. Malaria along with AIDS and tuberculosis are killing large numbers of people and crippling the economies of the affected African countries. Though an enormous effort has been made during the past twenty years to develop vaccines to block malaria in humans, the incidence of the disease is increasing in Africa. The reasons for this development include a breakdown in mosquito control related to increased insecticide resistance, as well as increased parasite resistance to antimalarial drugs. It is clear that new methods of Anopheles mosquito control are needed to ameliorate the medical and economic situation in sub-Saharan Africa. As a step toward new malaria control methods, the international Plasmodium falciparum and Anopheles gambiae consortia have carried out the full genome sequencing of the most deadly malaria parasite and the most efficient vector. These, combined with the human genome sequence, provide the genomic infrastructure for a better understanding of the complex interactions within the malaria triad. This essay discusses possible strategies as to how the Anopheles genome can contribute to malaria control.  相似文献   

3.
Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.  相似文献   

4.
Plasmodium falciparum gametocytes: still many secrets of a hidden life   总被引:3,自引:0,他引:3  
Sexual differentiation and parasite transmission are intimately linked in the life cycle of malaria parasites. The specialized cells providing this crucial link are the Plasmodium gametocytes. These are formed in the vertebrate host and are programmed to mature into gametes emerging from the erythrocytes in the midgut of a blood-feeding mosquito. The ensuing fusion into a zygote establishes parasite infection in the insect vector. Although key mechanisms of gametogenesis and fertilization are becoming progressively clear, the fundamental biology of gametocyte formation still presents open questions, some of which are specific to the human malaria parasite Plasmodium falciparum. Developmental commitment to sexual differentiation, regulation of stage-specific gene expression, the profound molecular and cellular changes accompanying gametocyte specialization, the requirement for tissue-specific sequestration in P. falciparum gametocytogenesis are proposed here as areas for future investigation. The epidemiological relevance of parasite transmission from humans to mosquito in the spread of malaria and of Plasmodium drug resistance genes indicates that understanding molecular mechanisms of gametocyte formation is highly relevant to design strategies able to interfere with the transmission of this disease.  相似文献   

5.
The human malaria parasite Plasmodium falciparum is responsible for the majority of malaria-related deaths. Tools allowing the study of the basic biology of P. falciparum throughout the life cycle are critical to the development of new strategies to target the parasite within both human and mosquito hosts. We here present 3D7HT-GFP, a strain of P. falciparum constitutively expressing the Green Fluorescent Protein (GFP) throughout the life cycle, which has retained its capacity to complete sporogonic development. The GFP expressing cassette was inserted in the Pf47 locus. Using this transgenic strain, parasite tracking and population dynamics studies in mosquito stages and exo-erythrocytic schizogony is greatly facilitated. The development of 3D7HT-GFP will permit a deeper understanding of the biology of parasite-host vector interactions, and facilitate the development of high-throughput malaria transmission assays and thus aid development of new intervention strategies against both parasite and mosquito.  相似文献   

6.
Migration of the protozoan parasite Plasmodium through the mosquito is a complex and delicate process, the outcome of which determines the success of malaria transmission. The mosquito is not simply the vector of Plasmodium but, in terms of the life cycle, its definitive host: there, the parasite undergoes its sexual development, which results in colonization of the mosquito salivary glands. Two of the parasite's developmental stages in the mosquito, the ookinete and the sporozoite, are invasive and depend on gliding motility to access, penetrate and traverse their host cells. Recent advances in the field have included the identification of numerous Plasmodium molecules that are essential for parasite migration in the mosquito vector.  相似文献   

7.
Incessant transmission of the parasite by mosquitoes makes most attempts to control malaria fail. Blocking of parasite transmission by mosquitoes therefore is a rational strategy to combat the disease. Upon ingestion of blood meal mosquitoes secrete chitinase into the midgut. This mosquito chitinase is a zymogen which is activated by the removal of a propeptide from the N-terminal. Since the midgut peritrophic matrix acts as a physical barrier, the activated chitinase is likely to contribute to the further development of the malaria parasite in the mosquito. Earlier it has been shown that inhibiting chitinase activity in the mosquito midgut blocked sporogonic development of the malaria parasite. Since synthetic propeptides of several zymogens have been found to be potent inhibitors of their respective enzymes, we tested propeptide of mosquito midgut chitinase as an inhibitor and found that the propeptide almost completely inhibited the recombinant or purified native Anopheles gambiae chitinase. We also examined the effect of the inhibitory peptide on malaria parasite development. The result showed that the synthetic propeptide blocked the development of human malaria parasite Plasmodium falciparum in the African malaria vector An. gambiae and avian malaria parasite Plasmodium gallinaceum in Aedes aegypti mosquitoes. This study implies that the expression of inhibitory mosquito midgut chitinase propeptide in response to blood meal may alter the mosquito's vectorial capacity. This may lead to developing novel strategies for controlling the spread of malaria.  相似文献   

8.
It is well documented that the density of Plasmodium in its vertebrate host modulates the physiological response induced; this in turn regulates parasite survival and transmission. It is less clear that parasite density in the mosquito regulates survival and transmission of this important pathogen. Numerous studies have described conversion rates of Plasmodium from one life stage to the next within the mosquito, yet few have considered that these rates might vary with parasite density. Here we establish infections with defined numbers of the rodent malaria parasite Plasmodium berghei to examine how parasite density at each stage of development (gametocytes; ookinetes; oocysts and sporozoites) influences development to the ensuing stage in Anopheles stephensi, and thus the delivery of infectious sporozoites to the vertebrate host. We show that every developmental transition exhibits strong density dependence, with numbers of the ensuing stages saturating at high density. We further show that when fed ookinetes at very low densities, oocyst development is facilitated by increasing ookinete number (i.e., the efficiency of ookinete-oocyst transformation follows a sigmoid relationship). We discuss how observations on this model system generate important hypotheses for the understanding of malaria biology, and how these might guide the rational analysis of interventions against the transmission of the malaria parasites of humans by their diverse vector species.  相似文献   

9.
Despite being phylogenetically very close to Anopheles gambiae, the major mosquito vector of human malaria in Africa, Anopheles quadriannulatus is thought to be a non-vector. Understanding the difference between vector and non-vector mosquitoes can facilitate development of novel malaria control strategies. We demonstrate that An. quadriannulatus is largely resistant to infections by the human parasite Plasmodium falciparum, as well as by the rodent parasite Plasmodium berghei. By using genetics and reverse genetics, we show that resistance is controlled by quantitative heritable traits and manifested by lysis or melanization of ookinetes in the mosquito midgut, as well as by killing of parasites at subsequent stages of their development in the mosquito. Genes encoding two leucine-rich repeat proteins, LRIM1 and LRIM2, and the thioester-containing protein, TEP1, are identified as essential in these immune reactions. Their silencing completely abolishes P. berghei melanization and dramatically increases the number of oocysts, thus transforming An. quadriannulatus into a highly permissive parasite host. We hypothesize that the mosquito immune system is an important cause of natural refractoriness to malaria and that utilization of this innate capacity of mosquitoes could lead to new methods to control transmission of the disease.  相似文献   

10.
The malaria parasite, Plasmodium, has evolved an intricate life cycle that includes stages specific to a mosquito vector and to the vertebrate host. The mosquito midgut represents the first barrier Plasmodium parasites encounter following their ingestion with a blood meal from an infected vertebrate. Elucidation of the molecular interaction between the parasite and the mosquito could help identify novel approaches to preventing parasite development and subsequent transmission to vertebrates. We have used an integrated Bulked Segregant Analysis-Differential Display (BSA-DD) approach to target genes expressed that are in the midgut and located within two genome regions involved in determining susceptibility to P. gallinaceum in the mosquito Aedes aegypti. A total of twenty-two genes were identified and characterized, including five genes with no homologues in public sequence databases. Eight of these genes were mapped genetically to intervals on chromosome 2 that contain two quantitative trait loci (QTLs) that determine susceptibility to infection by P. gallinaceum. Expression analysis revealed several expression patterns, and ten genes were specifically or preferentially expressed in the midgut of adult females. Real-time PCR quantification of expression with respect to the time of blood meal ingestion and infection status in mosquito strains permissive and refractory for malaria revealed a differential expression pattern for seven genes. These represent candidate genes that may influence the ability of the mosquito vector to support the development of Plasmodium parasites. Here we describe their isolation and discuss their putative roles in parasite-mosquito interactions and their use as potential targets in strategies designed to block transmission of malaria.  相似文献   

11.
Four Plasmodium species cause malaria in humans. Most malaria-endemic regions feature mixed infections involving two or more of these species. Factors contributing to heterogeneous parasite species and disease distribution include differences in genetic polymorphisms underlying parasite drug resistance and host susceptibility, mosquito vector ecology and transmission seasonality. It is suggested that unknown factors limit mixed Plasmodium species infections, and that mixed-species infections protect against severe Plasmodium falciparum malaria. Careful examination of methods used to detect these parasites and interpretation of individual- and population-based data are necessary to understand the influence of mixed Plasmodium species infections on malarial disease. This should ensure that deployment of future antimalarial vaccines and drugs will be conducted in a safe and timely manner.  相似文献   

12.
Transmission from the vertebrate host to the mosquito vector represents a major population bottleneck in the malaria life cycle that can successfully be targeted by intervention strategies. However, to date only about 25 parasite proteins expressed during this critical phase have been functionally analysed by gene disruption. We describe the first systematic, larger scale generation and phenotypic analysis of Plasmodium berghei knockout (KO) lines, characterizing 20 genes encoding putatively secreted proteins expressed by the ookinete, the parasite stage responsible for invasion of the mosquito midgut. Of 12 KO lines that were generated, six showed significant reductions in parasite numbers during development in the mosquito, resulting in a block in transmission of five KOs. While expression data, time point of essential function and mutant phenotype correlate well in three KOs defective in midgut invasion, in three KOs that fail at sporulation, maternal inheritance of the mutant phenotype suggests that essential function occurs during ookinete formation and thus precedes morphological abnormalities by several days.  相似文献   

13.
Malaria creates serious health and economic problems which call for integrated management strategies to disrupt interactions among mosquitoes, the parasite and humans. In order to reduce the intensity of malaria transmission, malaria vector control may be implemented to protect individuals against infective mosquito bites. As a sustainable larval control method, the use of larvivorous fish is promoted in some circumstances. To evaluate the potential impacts of this biological control measure on malaria transmission, we propose and investigate a mathematical model describing the linked dynamics between the host–vector interaction and the predator–prey interaction. The model, which consists of five ordinary differential equations, is rigorously analysed via theories and methods of dynamical systems. We derive four biologically plausible and insightful quantities (reproduction numbers) that completely determine the community composition. Our results suggest that the introduction of larvivorous fish can, in principle, have important consequences for malaria dynamics, but also indicate that this would require strong predators on larval mosquitoes. Integrated strategies of malaria control are analysed to demonstrate the biological application of our developed theory.  相似文献   

14.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

15.
More than a century after the discovery of the complex life cycle of its causative agent, malaria remains a major health problem. Understanding mosquito-malaria interactions could lead to breakthroughs in malaria control. Novel strategies, such as the design of transgenic mosquitoes refractory to Plasmodium, or design of human vaccines emulating mosquito resistance to the parasite, require extensive knowledge of processes involved in immune responses and of microevolutionary mechanisms that create and maintain variation in immune responses in wild vector populations. The recent realization of how intimately and specifically mosquitoes and Plasmodium co-evolve in Nature is driving vector molecular biologists and evolutionary ecologists to move closer to the natural setting under the common umbrella of 'Ecological immunology'.  相似文献   

16.
Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.  相似文献   

17.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

18.
Waters AP 《Cell》2005,122(2):149-151
The life cycle of the malaria parasite (Plasmodium) is remarkably complex. Malaria parasites must engage in highly specific and varied interactions with cell types of both the mammalian host and the mosquito vector. In this issue of Cell, report detailed molecular insights into an intimate interaction between a malaria parasite protein and its host cell receptor that enables the parasite to invade erythrocytes.  相似文献   

19.
The need for new malaria control strategies has led to increased efforts to understand more clearly the mosquito stages of Plasmodium. The absolute requirement of gamete maturation and fertilization, transformation of sedentary zygote to motile ookinete, ookinete interaction and invasion of gut epithelium, and the survival of the mosquito against immune attack suggest that numerous unidentified targets exist, which could be modified to achieve transmission-blocking of malaria. In the search for new transmission-blocking targets in the mosquito gut, Mohammed Shahabuddin, Stéphane Cociancich and Helge Zieler here summarize recent studies to identify the cellular and biochemical factors that affect the malaria parasite's development; in particular, factors influencing the early development of Plasmodium, receptor-mediated interactions between the parasite and the mosquito midgut, and the gut-associated immune responses directed against Plasmodium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号