首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
Somatostatin receptors   总被引:4,自引:0,他引:4  
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.  相似文献   

2.
Abstract

The pharmacological profile and localization of somatostatin (SRIF) receptors were determined in rat, monkey and human cerebellum. In rat cerebellar cortex, low ss1/sst4, intermediate sst2 and very high sst3 receptor mRNA levels were found, sst1 mRNA was also expressed in the deep cerebellar nuclei. [125I]Tyr3-octreotide binding sites in cerebellar membranes correlated with recombinant sst2, but not with sst5 or sst3 receptors and were found in the molecular layer of the cerebellum. [125I]CGP 23996 (in Na+-buffer) binding in rat cerebellum correlated with sst1 or sst4, but not with sst2, sst3 or sst5 receptor binding. Similar data were obtained in rhesus monkey cerebellum. mRNAs for all five receptors were found in the granule cell layer of the human cerebellum and/or in the dentate nucleus. [125I]Tyr3-octreotide binding was strong in the molecular layer and correlated with that of recombinant sst2 receptors, but not with sst3 or sst5 receptors. [125I]CGP 23996 (in Mg++-buffer) binding was heterogeneous (about 75%. to sst2 and 25% to sst1 and/or sst4 receptors). The molecular and granular layers were equally and the dentate nucleus strongly labeled. Thus. SRIF receptors of the sst2, sst1 and/or sst4 subtype are present in the rat, monkey and human cerebellum. In the latter two species, the sst2 type appears to be predominant. Surprisingly, the high expression of sst3 receptor mRNA is not supported by radioligand binding data in any of the species studied. The reason for this discrepancy remains to be elucidated.  相似文献   

3.
4.
Somatostatin‐14 (SRIF) co‐localizes with GABA in the hippocampus and regulates neuronal excitability. A role of SRIF in the control of hippocampal activity has been proposed, although the exact contribution of each SRIF receptor (sst1–sst5) in mediating SRIF action requires some clarification. We used hippocampal slices of wild‐type and sst1 knockout (KO) mice and selective pharmacological tools to provide conclusive evidence for a role of sst1 in mediating SRIF inhibition of synaptic transmission. With single‐ and double‐label immunohistochemistry, we determined the distribution of sst1 in hippocampal slices and we quantified sst1 colocalization with SRIF. With electrophysiology, we found that sst1 activation with CH‐275 inhibited both the NMDA‐ and the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid (AMPA)‐mediated responses. Results from sst1 KO slices confirmed the specificity of CH‐275 effects; sst1 activation did not affect the inhibitory transmission which was in contrast increased by sst4 activation with L‐803,087 in both wild‐type and sst1 KO slices. The AMPA‐mediated responses were increased by L‐803,087. Functional interaction between sst1 and sst4 is suggested by the finding that their combined activation prevented the CH‐275‐induced inhibition of AMPA transmission. The involvement of pre‐synaptic mechanisms in mediating inhibitory effects of sst1 on excitatory transmission was demonstrated by the finding that CH‐275 (i) increased the paired‐pulse facilitation ratio, (ii) did not influence the AMPA depolarization in the presence of tetrodotoxin, and (iii) inhibited glutamate release induced by epileptiform treatment. We conclude that SRIF control of excitatory transmission through an action at sst1 may represent an important contribution to the regulation of hippocampal activity.  相似文献   

5.
Somatostatin (SRIF) is a multigene family of peptides. SRIF-14 is conserved with identical primary structure in species across the vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species. Notably, three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro(2)]SRIF-14, has also been identified in sturgeon and African lungfish, and is closely associated with the amphibian [Pro(2),Met(13)]SRIF-14 gene and mammalian cortistatin gene. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type one and two SRIF receptors have been identified from goldfish and type three SRIF receptor from an electric fish. Fish SRIF receptors display considerable homology to mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. The identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors in fish opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF actions in fish.  相似文献   

6.
Somatostatin (SRIF or SS) is a phylogenetically ancient, multigene family of peptides. SRIF-14 is conserved with identical primary structure in species of all classes of vertebrates. The presence of multiple SRIF genes has been demonstrated in a number of fish species and could extend to tetrapods. Three distinct SRIF genes have been identified in goldfish. One of these genes, which encodes [Pro2]SRIF-14, is also present in sturgeon and African lungfish, and is closely associated with amphibian [Pro2,Met13]SRIF-14 gene and mammalian cortistatin gene. The post-translational processing of SRIF precursors could result in multiple forms of mature SRIF peptides, with differential abundance and tissue- or cell type-specific patterns. The main neuroendocrine role of SRIF-14 peptide that has been determined in fish is the inhibition of pituitary growth hormone secretion. The functions of SRIF-14 variant or larger forms of SRIF peptide and the regulation of SRIF gene expression remain to be explored. Type 1 and type 2 SRIF receptors have been identified from goldfish and a type 3 SRIF receptor has been identified from an electric fish. Fish SRIF receptors display considerable homology with mammalian counterparts in terms of primary structure and negative coupling to adenylate cyclase. Although additional types of receptors remain to be determined, identification of the multiple gene family of SRIF peptides and multiple types of SRIF receptors opens a new avenue for the study of physiological roles of SRIF, and the molecular and cellular mechanisms of SRIF action in fish.  相似文献   

7.
Somatostatin (SRIF) is a neurotransmitter that produces its multiple effects in the CNS through interactions with membrane-bound receptors. Subtypes of SRIF receptors are found in the CNS that are distinguished by their sensitivities to the cyclic hexapeptide MK-678, such that SRIF1 receptors are sensitive to MK-678 and SRIF2 receptors are insensitive to MK-678. In the present study, we further examined the selectivities of a series of structurally diverse SRIF analogues for SRIF receptor subtypes. SRIF receptors were labeled by 125I-Tyr11-SRIF, which has indistinguishable affinities for SRIF receptor subtypes. The inhibition by MK-678 was incomplete, indicating this peptide is highly selective for a subtype of SRIF receptor that we have termed the SRIF1 receptor. The binding of 125I-MK-678 to SRIF1 receptors was monophasically inhibited by SRIF, the octapeptides (such as SMS-201-995), and the hexapeptides (such as MK-678), consistent with the highly selective labeling of a subtype of SRIF receptor. In contrast, the smaller CGP-23996-like analogues did not inhibit 125I-MK-678 binding to SRIF1 receptors. The binding of 125I-CGP-23996 to SRIF receptors was inhibited by SRIF and the octapeptides with Hill coefficients of less than 1, indicating that 125I-CGP-23996 labels multiple SRIF receptor subtypes. The hexapeptides and CGP-23996-like compounds produced only partial inhibitions of 125I-CGP-23996 binding, which were additive, indicating selective interactions of these compounds with the different receptor subpopulations labeled by 125I-CGP-23996. 125I-Tyr11-SRIF binding and 125I-CGP-23996 binding to SRIF receptors were likewise only partially affected by 100 microM guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), a concentration that completely abolishes specific 125I-MK-678 binding to SRIF1 receptors. The component of 125I-CGP-23996 labeling that was sensitive to GTP gamma S was also MK-678 sensitive. Thus, two subpopulations of SRIF receptors exist in the CNS. The SRIF1 receptor is sensitive to cyclic hexapeptides such as MK-678 and to GTP gamma S but insensitive to smaller CGP-23996-like compounds. The SRIF2 receptor is sensitive to the CGP-23996-like compounds and can be selectively labeled by 125I-CGP-23996 in the presence of high concentrations of the hexapeptides or GTP gamma S because, unlike the SRIF1 receptor, the SRIF2 receptor is insensitive to these agents. The SRIF receptor subtype-selective peptide analogues will be useful in the future characterization of the functions mediated by SRIF receptor subtypes in the CNS.  相似文献   

8.
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst1−5) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.  相似文献   

9.
Somatostatin mediates inhibitory functions through five G protein–coupled somatostatin receptors (sst1–5). We used immunohistochemistry, immunofluorescence, and RT-PCR to determine the presence of somatostatin receptors sst1, sst2A, sst2B, sst3, sst4, and sst5 in normal and IgA nephropathy human kidney. All somatostatin receptors were detected in the thin tubules (distal convoluted tubules and loops of Henle) and thick tubules (proximal convoluted tubules) in the tissue sections from nephrectomy and biopsy samples. Immunopositive sst1 and sst4 staining was more condensed in the cytoplasm of tubular epithelial cells. In normal kidney tissue sections, podocytes and mesangial cells in the glomeruli stained for sst1, sst2B, sst4 and sst5, and stained weakly for sst3. In IgA kidney tissue, the expression of somatostatin receptors was significantly increased with particular immmunopositive staining for sst1, sst2B, sst4, and sst5 within glomeruli. In the epithelial cells, the staining for sst2B and sst4 in proximal tubules and sst1, sst2B, and sst5 in distal tubules was increased. The mRNA expression of sst1–5 was also detected by RT-PCR. Somatostatin and all five receptor subtypes were ubiquitously distributed in normal kidney and IgA nephropathy. The increased expression of somatostatin receptors in IgA nephropathy kidney might be the potential pathogenesis of inflammatory renal disease. (J Histochem Cytochem 56:733–743, 2008)  相似文献   

10.
11.
Human somatostatin receptor subtypes (SSTR1-5) bind their natural ligands SRIF-14 and SRIF-28 with high affinity. By contrast, short synthetic SRIF analogues such as SMS 201-995, a peptide agonist used for the treatment of various endocrine and malignant disorders, display sub-nanomolar affinity only for the receptor subtype SSTR2. To understand the molecular nature of selective peptide agonist binding to somatostatin receptors we have now, by site-directed mutagenesis, identified amino acids mediating SMS 201-995 specificity for SSTR2. Sequentially, amino acids in SSTR1, a receptor subtype exhibiting low affinity for SMS 201-995, were exchanged for the corresponding SSTR2 residues. After three consecutive steps, in which eight amino acids were exchanged, a SSTR1 mutant receptor with high affinity for SMS 201-995 was obtained. Receptor mutants with different combinations of these eight amino acids were then constructed. A single Ser305 to Phe mutation in TM VII increased the affinity of SSTR1 for SMS 201-995 nearly 100-fold. When this mutation was combined with an exchange of Gln291 to Asn in TM VI, almost full susceptibility to SMS 201-995 was obtained. Thus, it is concluded that the specificity of SMS 201-995 for SSTR2 is mainly defined by these two amino acids in transmembrane domains VI and VII. Using the conjugate gradient method we have, by analogy to the well established structure of bacteriorhodopsin, built a model for SRIF receptor-ligand interactions that explains the importance of Gln291 and Ser305 for the selectivity of agonists.  相似文献   

12.
GABAA receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABAA receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABAA receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABAA receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour.  相似文献   

13.
Somatostatin (SRIF) regulates pancreatic insulin and glucagon secretion. In the present study we describe the generation of SRIF receptor subtype 5 knockout (sst(5) KO) mice to examine the role of SRIF receptor subtypes (sst) in regulating insulin secretion and glucose homeostasis. Mice deficient in sst(5) were viable, fertile, appeared healthy, and displayed no obvious phenotypic abnormalities. Pancreatic islets isolated from sst(5) KO mice displayed increased total insulin content as compared with islets obtained from wild-type (WT) mice. Somatostatin-28 (SRIF-28) and the sst(5)/sst(1)-selective agonist compound 5/1 potently inhibited glucose-stimulated insulin secretion from WT islets. SRIF-28 inhibited insulin secretion from sst(5) KO islets with 16-fold less potency while the maximal effect of compound 5/1 was markedly diminished when compared with its effects in WT islets. sst(5) KO mice exhibited decreased blood glucose and plasma insulin levels and increased leptin and glucagon concentrations compared with WT mice. Furthermore, sst(5) KO mice displayed decreased susceptibility to high fat diet-induced insulin resistance. The results of these studies suggest sst(5) mediates SRIF inhibition of pancreatic insulin secretion and contributes to the regulation of glucose homeostasis and insulin sensitivity. Our findings suggest a potential beneficial role of sst(5) antagonists for alleviating metabolic abnormalities associated with obesity and insulin resistance.  相似文献   

14.
Extracts of Escherichia coli grown in defined medium contain somatostatin-related material (1–10 pg/g wet weight of cells). Preconditioned medium had no immunoactive somatostatin whereas, conditioned medium had 110–150 pg/1. Following purification of the extracted material on Sep-pak C18, Bio-Gel P-6 and HPLC, multiple molecular weight forms of somatostatin- (SRIF-) related material were identified. The material in one peak reacted in both the N-terminal and C-terminal SRIF immunoassay and coeluted on HPLC with SRIF-28, whereas that in a second peak eluted near SRIF-14 and was reactive only in the C-terminal SRIF assay. The two peaks are thus similar to SRIF-28 and SRIF-14 of vertebrates. These findings add support to the suggestion that vertebrate-type peptide hormones and neuropeptides have early evolutionary origins.  相似文献   

15.
Somatostatin released from capsaicin-sensitive sensory nerves of the lung during endotoxin-induced murine pneumonitis inhibits inflammation and hyperresponsiveness, presumably via somatostatin receptor subtype 4 (sst4). The goal of the present study was to identify sst4 receptors in mouse and human lungs and to reveal its inflammation-induced alterations with real-time quantitative PCR, Western blot, and immunohistochemistry. In non-inflamed mouse and human lungs, mRNA expression and immunolocalization of sst4 are very similar. They are present on bronchial epithelial, vascular endothelial, and smooth-muscle cells. The sst4 receptor protein in the mouse lung significantly increases 24 hr after intranasal endotoxin administration as well as in response to 3 months of whole-body cigarette smoke exposure, owing to the infiltrating sst4-positivite mononuclear cells and neutrophils. In the chronically inflamed human lung, the large number of activated macrophages markedly elevate sst4 mRNA levels, although there is no change in acute purulent pneumonia, in which granulocytes accumulate. Despite mouse granulocytes, human neutrophils do not show sst4 immunopositivity. We provide the first evidence for the expression, localization, and inflammation-induced alterations of sst4 receptors in murine and human lungs. Inasmuch as tissue distribution of this receptor is highly similar, extrapolation of murine experimental results to human conditions might be possible. (J Histochem Cytochem 57:1127–1137, 2009)  相似文献   

16.
Prokineticin 1 (pk1) and prokineticin 2 (pk2) interact with two structurally related G-protein coupled receptors, prokineticin receptor 1 (PKR1) and prokineticin receptor 2 (PKR2). Cellular signalling studies show that the activated receptors can evoke Ca2+-mobilization, pertussis toxin-sensitive ERK phosphorylation, and intracellular cAMP accumulation, which suggests the partecipation of several G protein subtypes, such as Gq/11, Gi/o and Gs. However, direct interactions with these transduction proteins have not been studied yet. Here we measured by bioluminescence resonance energy transfer (BRET) the association of PKR1 and PKR2 with different heterotrimeric Gα proteins in response to pk1 and pk2 activation. Using host-cell lines carrying gene deletions of Gαq/11 or Gαs, and pertussis toxin treatment to abolish the receptor interactions with Gαi/o, we determined that both receptors could couple with comparable efficiency to Gq/11 and Gi/o, but far less efficiently to Gs or other pertussis toxin-insensitive G proteins. We also used BRET methodology to assess the association of prokineticin receptors with β-arrestin isoforms. Fluorescent versions of the isoforms were transfected both in HEK293 cells and in double KO β-arrestin 1/2 mouse fibroblasts, to study receptor interaction with the reconstituted individual β-arrestins without background expression of the endogenous genes. Both receptors formed stable BRET-emitting complexes with β-arrestin 2 but not with β-arrestin 1, indicating strong selectivity for the former. In all the studied transducer interactions and in both receptors, pk2 was more potent than pk1 in promoting receptor binding to transduction proteins.  相似文献   

17.
The recent cloning of three distinct melatonin receptor subtypes (Mel1a, Mel1b and Mel1c) which are part of a new family of G-protein coupled receptors, and probably mediate the physiological actions of the hormone, has spurred interest in the design of analogues with subtype selectivity. The 5-methoxyl and N-acetyl groups of melatonin are important for binding to and activation of the receptor. The indole nucleus serves to hold these two groups at the correct distance from one another and allows them to adopt the required orientation for interaction with the receptor binding pocket. We have investigated the subtype selectivity of a number of analogues of melatonin in which the structure has systematically been modified in order to probe the similarities and differences in the interaction of ligand and receptor subtype. At all three subtypes 5-methoxyl and N-acetyl groups of melatonin are important for high affinity binding. However, replacing the 5-methoxyl group (eg with 5-H, 5-OH, 5-Me or 5-BzO) reduces affinity much less at the Mel1b receptor subtype than at either Mel1a or Mel1c cloned subtypes. This suggests differences between the Mel1b and Mel 1a/1c subtypes in the size and shape of the binding pocket or in the manner in which melatonin interacts with the receptor at this position. Further studies have revealed that analogues with longer N-acyl carbon chains behave similarly at each subtype. These observations suggest that the ‘pocket’ into which the N-acetyl group fits is very similar for each subtype. Substitutions at the 2-position on the indole ring improved affinity at each receptor subtype but did not give selective analogues. The systematic ‘mapping’ of the requirements for binding at each receptor subtype should allow the design of more selective agonists and antagonists, which will be valuable tools for the characterization and classification of functional melatonin receptors.  相似文献   

18.
The in vitro binding of [125I-Tyr11]somatostatin-14 (SRIF-14) to membranes prepared from cultured human small cell lung carcinoma (SCLC) cells (NCI-H69) has been characterized. Binding to SCLC was monophasic and of high affinity (Kd = 0.59 +/- 0.02 nM, n = 3). The estimated Bmax was 173 +/- 2.4 fmol/mg protein. Receptors were also present on solid NCI-H69 tumors grown in vivo in the athymic nude mouse. However, the concentration was only about 10% of that observed in cell culture. Biologically-active SRIF analogues were potent inhibitors of [125I-Tyr11]SRIF-14 binding, and an analysis of the pharmacological specificity indicated that the SCLC receptor was of the peripheral (e.g., non-neural) subtype. The presence of SRIF receptors on SCLC membranes may indicate that SRIF has a role in regulation of SCLC function.  相似文献   

19.
Somatostatin (somatotropin release inhibitory factor; SRIF) is an endogenous peptide produced at sites of inflammation, making the SRIF a candidate in regulating vascular inflammation. We have used primary human coronary artery endothelial cells (hCAEC) as a model to study SRIF's vascular actions. RT-PCR analysis of hCAEC total mRNA demonstrated the presence of the sst(4) receptor subtype, providing a target for SRIF intracellular signaling. Western blotting with phospho-specific ERK1/2 antibodies showed that SRIF-14 acutely inhibited basal phosphorylation of the extracellular regulated kinases (ERK1/2) by 80%. In addition, SRIF-14 treated hCAEC cell lysates showed a 2.6-fold increase in phosphatase activity, which was inhibited by sodium vanadate. Furthermore, SRIF-14 appeared to be anti-inflammatory in hCAEC as IL-1beta-induced adhesion molecule expression was reduced by 50%. Together, these results show that the coronary artery endothelium is a direct target of SRIF action.  相似文献   

20.
The effect of various vertebrate somatostatins (SRIF) on basal growth hormone (GH) secretion from goldfish pituitary fragments was studied using an in vitro perifusion system. SRIF-14 caused a rapid and dose-dependent decrease in the rate of GH release from goldfish pituitary fragments. The half-maximal effective dose (ED50) of SRIF-14 was calculated as 1.3 nM following exposure to two minute pulses of increasing concentrations of SRIF-14, whereas the ED50 of SRIF-14 calculated after continuous exposure to sequentially increasing doses of SRIF-14 was 65 nM. This difference suggests that the pituitary fragments were less responsive to SRIF-14 in the latter experiment, possibly as a result of previous exposure to SRIF-14. SRIF-28 was found to be equipotent with SRIF-14 in decreasing basal GH secretion from the goldfish pituitary. In contrast, catfish SRIF-22, a uniquely teleost SRIF isolated from catfish pancreatic islets, did not alter GH secretion. These results provide further support for the hypothesis that SRIF-14 or a very similar molecule functions as a GH release-inhibiting factor in teleosts, indicating that this action of SRIF-14 has been fully conserved throughout vertebrate evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号