首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organisms and their properties. Our solution was to create a framework for describing microarray experiments with an initial focus on the biological sample and its manipulation. For concepts that are common for many species, we could provide a manageable listing of controlled terms. For concepts that are species-specific or whose values cannot be readily listed, we created an 'OntologyEntry' concept that referenced an external resource. The MGED ontology is a work in progress that needs additional instances and particularly needs constraints to be added. The ontology currently covers the experimental sample and design, and we have begun capturing aspects of the microarrays themselves as well. The primary application of the ontology will be to develop forms for entering information into databases, and consequently allowing queries, taking advantage of the structure provided by the ontology. The application of an ontology of experimental conditions extends beyond microarray experiments and, as the scope of MGED includes other aspects of functional genomics, so too will the MGED ontology.  相似文献   

2.
3.
4.
MOTIVATION: An important underlying assumption of any experiment is that the experimental subjects are similar across levels of the treatment variable, so that changes in the response variable can be attributed to exposure to the treatment under study. This assumption is often not valid in the analysis of a microarray experiment due to systematic biases in the measured expression levels related to experimental factors such as spot location (often referred to as a print-tip effect), arrays, dyes, and various interactions of these effects. Thus, normalization is a critical initial step in the analysis of a microarray experiment, where the objective is to balance the individual signal intensity levels across the experimental factors, while maintaining the effect due to the treatment under investigation. RESULTS: Various normalization strategies have been developed including log-median centering, analysis of variance modeling, and local regression smoothing methods for removing linear and/or intensity-dependent systematic effects in two-channel microarray experiments. We describe a method that incorporates many of these into a single strategy, referred to as two-channel fastlo, and is derived from a normalization procedure that was developed for single-channel arrays. The proposed normalization procedure is applied to a two-channel dose-response experiment.  相似文献   

5.
SUMMARY: The NetAffx Gene Ontology (GO) Mining Tool is a web-based, interactive tool that permits traversal of the GO graph in the context of microarray data. It accepts a list of Affymetrix probe sets and renders a GO graph as a heat map colored according to significance measurements. The rendered graph is interactive, with nodes linked to public web sites and to lists of the relevant probe sets. The GO Mining Tool provides visualization combining biological annotation with expression data, encompassing thousands of genes in one interactive view. AVAILABILITY: GO Mining Tool is freely available at http://www.affymetrix.com/analysis/query/go_analysis.affx  相似文献   

6.
Often microarray studies require a reference to indirectly compare the samples under observation. References based on pooled RNA from different cell lines have already been described (here referred to as RNA-R), but they usually do not exhaustively represent the set of genes printed on a chip, thus requiring many adjustments during the analyses. A reference could also be generated in vitro transcribing the collection of cDNA clones printed on the microarray in use (here referred to as T3-R). Here we describe an alternative and simpler PCR-based methodology to construct a similar reference (Chip-R), and we extensively test and compare it to both RNA-R and T3-R. The use of both Chip-R and T3-R dramatically increases the number of signals on the slides and gives more reproducible results than RNA-R. Each reference preparation is also evaluated in a simple microarray experiment comparing two different RNA populations. Our results show that the introduction of a reference always interferes with the analysis. Indeed, the direct comparison is able to identify more up- or down-regulated genes than any reference-mediated analysis. However, if a reference has to be used, Chip-R and T3-R are able to guarantee more reliable results than RNA-R.  相似文献   

7.
SUMMARY: Here, we describe a tool for VARiability Analysis of DNA microarrays experiments (VARAN), a freely available Web server that performs a signal intensity based analysis of the log2 expression ratio variability deduced from DNA microarray data (one or two channels). Two modules are proposed: VARAN generator to compute a sliding windows analysis of the experimental variability (mean and SD) and VARAN analyzer to compare experimental data with an asymptotic variability model previously built with the generator module from control experiments. Both modules provide normalized intensity signals with five possible methods, log ratio values and a list of genes showing significant variations between conditions. AVAILABILITY: http://www.bionet.espci.fr/varan/ SUPPLEMENTARY INFORMATION: http://www.bionet.espci.fr/varan/help.html  相似文献   

8.

Background  

Numerous microarray analysis programs have been created through the efforts of Open Source software development projects. Providing browser-based interfaces that allow these programs to be executed over the Internet enhances the applicability and utility of these analytic software tools.  相似文献   

9.

Background  

High-throughput methods that allow for measuring the expression of thousands of genes or proteins simultaneously have opened new avenues for studying biochemical processes. While the noisiness of the data necessitates an extensive pre-processing of the raw data, the high dimensionality requires effective statistical analysis methods that facilitate the identification of crucial biological features and relations. For these reasons, the evaluation and interpretation of expression data is a complex, labor-intensive multi-step process. While a variety of tools for normalizing, analysing, or visualizing expression profiles has been developed in the last years, most of these tools offer only functionality for accomplishing certain steps of the evaluation pipeline.  相似文献   

10.
11.
12.

Background  

Gene expression levels in a given cell can be influenced by different factors, namely pharmacological or medical treatments. The response to a given stimulus is usually different for different genes and may depend on time. One of the goals of modern molecular biology is the high-throughput identification of genes associated with a particular treatment or a biological process of interest. From methodological and computational point of view, analyzing high-dimensional time course microarray data requires very specific set of tools which are usually not included in standard software packages. Recently, the authors of this paper developed a fully Bayesian approach which allows one to identify differentially expressed genes in a 'one-sample' time-course microarray experiment, to rank them and to estimate their expression profiles. The method is based on explicit expressions for calculations and, hence, very computationally efficient.  相似文献   

13.
Data analysis and management represent a major challenge for gene expression studies using microarrays. Here, we compare different methods of analysis and demonstrate the utility of a personal microarray database. Gene expression during HIV infection of cell lines was studied using Affymetrix U-133 A and B chips. The data were analyzed using Affymetrix Microarray Suite and Data Mining Tool, Silicon Genetics GeneSpring, and dChip from Harvard School of Public Health. A small-scale database was established with FileMaker Pro Developer to manage and analyze the data. There was great variability among the programs in the lists of significantly changed genes constructed from the same data. Similarly choices of different parameters for normalization, comparison, and standardization greatly affected the outcome. As many probe sets on the U133 chip target the same Unigene clusters, the Unigene information can be used as an internal control to confirm and interpret the probe set results. Algorithms used for the determination of changes in gene expression require further refinement and standardization. The use of a personal database powered with Unigene information can enhance the analysis of gene expression data.  相似文献   

14.
We consider array experiments that compare expression levels of a high number of genes in two cell lines with few repetitions and with no subject effect. We develop a statistical model that illustrates under which assumptions thresholding is optimal in the analysis of such microarray data. The results of our model explain the success of the empirical rule of two-fold change. We illustrate a thresholding procedure that is adaptive to the noise level of the experiment, the amount of genes analyzed, and the amount of genes that truly change expression level. This procedure, in a world of perfect knowledge on noise distribution, would allow reconstruction of a sparse signal, minimizing the false discovery rate. Given the amount of information actually available, the thresholding rule described provides a reasonable estimator for the change in expression of any gene in two compared cell lines.  相似文献   

15.
RNA amplification strategies for cDNA microarray experiments   总被引:5,自引:0,他引:5  
  相似文献   

16.

Background  

In a time-course microarray experiment, the expression level for each gene is observed across a number of time-points in order to characterize the temporal trajectories of the gene-expression profiles. For many of these experiments, the scientific aim is the identification of genes for which the trajectories depend on an experimental or phenotypic factor. There is an extensive recent body of literature on statistical methodology for addressing this analytical problem. Most of the existing methods are based on estimating the time-course trajectories using parametric or non-parametric mean regression methods. The sensitivity of these regression methods to outliers, an issue that is well documented in the statistical literature, should be of concern when analyzing microarray data.  相似文献   

17.
The efficiency of pooling mRNA in microarray experiments   总被引:11,自引:0,他引:11  
In a microarray experiment, messenger RNA samples are oftentimes pooled across subjects out of necessity, or in an effort to reduce the effect of biological variation. A basic problem in such experiments is to estimate the nominal expression levels of a large number of genes. Pooling samples will affect expression estimation, but the exact effects are not yet known as the approach has not been systematically studied in this context. We consider how mRNA pooling affects expression estimates by assessing the finite-sample performance of different estimators for designs with and without pooling. Conditions under which it is advantageous to pool mRNA are defined; and general properties of estimates from both pooled and non-pooled designs are derived under these conditions. A formula is given for the total number of subjects and arrays required in a pooled experiment to obtain gene expression estimates and confidence intervals comparable to those obtained from the no-pooling case. The formula demonstrates that by pooling a perhaps increased number of subjects, one can decrease the number of arrays required in an experiment without a loss of precision. The assumptions that facilitate derivation of this formula are considered using data from a quantitative real-time PCR experiment. The calculations are not specific to one particular method of quantifying gene expression as they assume only that a single, normalized, estimate of expression is obtained for each gene. As such, the results should be generally applicable to a number of technologies provided sufficient pre-processing and normalization methods are available and applied.  相似文献   

18.
Microarray experiments can generate enormous amounts of data, but large datasets are usually inherently complex, and the relevant information they contain can be difficult to extract. For the practicing biologist, we provide an overview of what we believe to be the most important issues that need to be addressed when dealing with microarray data. In a microarray experiment we are simply trying to identify which genes are the most "interesting" in terms of our experimental question, and these will usually be those that are either overexpressed or underexpressed (upregulated or downregulated) under the experimental conditions. Analysis of the data to find these genes involves first preprocessing of the raw data for quality control, including filtering of the data (e.g., detection of outlying values) followed by standardization of the data (i.e., making the data uniformly comparable throughout the dataset). This is followed by the formal quantitative analysis of the data, which will involve either statistical hypothesis testing or multivariate pattern recognition. Statistical hypothesis testing is the usual approach to "class comparison," where several experimental groups are being directly compared. The best approach to this problem is to use analysis of variance, although issues related to multiple hypothesis testing and probability estimation still need to be evaluated. Pattern recognition can involve "class prediction," for which a range of supervised multivariate techniques are available, or "class discovery," for which an even broader range of unsupervised multivariate techniques have been developed. Each technique has its own limitations, which need to be kept in mind when making a choice from among them. To put these ideas in context, we provide a detailed examination of two specific examples of the analysis of microarray data, both from parasitology, covering many of the most important points raised.  相似文献   

19.
MOTIVATION: Microarray experiments often involve hundreds or thousands of genes. In a typical experiment, only a fraction of genes are expected to be differentially expressed; in addition, the measured intensities among different genes may be correlated. Depending on the experimental objectives, sample size calculations can be based on one of the three specified measures: sensitivity, true discovery and accuracy rates. The sample size problem is formulated as: the number of arrays needed in order to achieve the desired fraction of the specified measure at the desired family-wise power at the given type I error and (standardized) effect size. RESULTS: We present a general approach for estimating sample size under independent and equally correlated models using binomial and beta-binomial models, respectively. The sample sizes needed for a two-sample z-test are computed; the computed theoretical numbers agree well with the Monte Carlo simulation results. But, under more general correlation structures, the beta-binomial model can underestimate the needed samples by about 1-5 arrays. CONTACT: jchen@nctr.fda.gov.  相似文献   

20.
Over the past few years, due to the popularisation of high-throughput methodologies such as DNA microarrays, the possibility of obtaining experimental data has increased significantly. Nevertheless, the interpretation of the results, which involves translating these data into useful biological knowledge, still remains a challenge. The methods and strategies used for this interpretation are in continuous evolution and new proposals are constantly arising. Initially, a two-step approach was used in which genes of interest were initially selected, based on thresholds that consider only experimental values, and then in a second, independent step the enrichment of these genes in biologically relevant terms, was analysed. For different reasons, these methods are relatively poor in terms of performance and a new generation of procedures, which draw inspiration from systems biology criteria, are currently under development. Such procedures, aim to directly test the behaviour of blocks of functionally related genes, instead of focusing on single genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号