首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stobadine and its two structural analogues, dehydrostobadine and N-acetylated stobadine were used to examine how structural alteration in the close proximity of the indolic nitrogen would influence the antioxidant activity of the substituted pyridoindoles. The compounds were tested for their efficiency to scavenge stable free radicals of alpha,alpha'-diphenyl-beta-picrylhydrazyl as well as for their ability to prevent 2,2'-azobis-(2-amidinopropane)hydrochloride induced peroxidation of dioleoyl phosphatidylcholine liposomes. The results proved that the substituted pyridoindoles can act as potent scavengers of peroxyl radicals both in aqueous and lipid phases, the antioxidant activity being comparable with that of Trolox. Structural changes in the proximity of the indolic nitrogen were found crucial for the radical scavenging efficiency: aromatisation of the pyridoindole skeleton in dehydrostobadine lowered the antioxidant activity, while acetylation of the indolic nitrogen completely abolished the ability to scavenge peroxyl radicals. The results are in agreement with the notion that the antioxidant activity of stobadine and of the related pyridoindoles may be mediated via the indolic nitrogen centre. When stobadine and Trolox were present simultaneously in liposomal incubations, Trolox spared stobadine in a dose-dependent manner; a direct interaction of Trolox with stobadinyl radical appears to be a plausible explanation with possible consequences for the antioxidant capacity of stobadine under in vivo conditions, where re-cycling of stobadine by vitamin E might occur.  相似文献   

2.
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than α-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than α-tocopherol; (e) to be a weaker antiradical than α-tocopherol in the reduction of the stable radical DPPH·. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like α-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

3.
Resveratrol inhibition of lipid peroxidation   总被引:14,自引:0,他引:14  
To define the molecular mechanism(s) of resveratrol inhibition of lipid peroxidation we have utilized model systems that allow us to study the different reactions involved in this complex process. Resveratrol proved (a) to inhibit more efficiently than either Trolox or ascorbate the Fe2+ catalyzed lipid hydroperoxide-dependent peroxidation of sonicated phosphatidylcholine liposomes; (b) to be less effective than Trolox in inhibiting lipid peroxidation initiated by the water soluble AAPH peroxyl radicals; (c) when exogenously added to liposomes, to be more potent than alpha-tocopherol and Trolox, in the inhibition of peroxidation initiated by the lipid soluble AMVN peroxyl radicals; (d) when incorporated within liposomes, to be a less potent chain-breaking antioxidant than alpha-tocopherol; (e) to be a weaker antiradical than alpha-tocopherol in the reduction of the stable radical DPPH*. Resveratrol reduced Fe3+ but its reduction rate was much slower than that observed in the presence of either ascorbate or Trolox. However, at the concentration inhibiting iron catalyzed lipid peroxidation, resveratrol did not significantly reduce Fe3+, contrary to ascorbate. In their complex, our data indicate that resveratrol inhibits lipid peroxidation mainly by scavenging lipid peroxyl radicals within the membrane, like alpha-tocopherol. Although it is less effective, its capacity of spontaneously entering the lipid environment confers on it great antioxidant potential.  相似文献   

4.
A study is made of the effect of GSH as a co-antioxidant with vitamin E during free radical chain autoxidation inhibition studies of dilinoleoylphosphatidylcholine (DLPC) liposomes. Oxidations are initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride) and in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile) under known conditions of the rate of free radical chain initiation (Ri). In reactions initiated in the aqueous phase, GSH is not an efficient antioxidant when acting alone; however, in cooperation with vitamin E in the bilayers, it does effect significant extensions of the efficient induction period of vitamin E. Quantitative studies show that GSH "spares" 0.4 molecules of vitamin E in the bilayer/molecule of GSH and therefore terminates approximately 0.8 peroxyl radical chains as a co-antioxidant with vitamin E. In contrast, GSH is not an effective co-antioxidant with an efficient water-soluble antioxidant, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). GSH spares only 0.08 molecules of Trolox/molecule of GSH during autoxidation initiated in the aqueous phase with azobis(2-amidinopropane hydrochloride). The inhibition rate constant for GSH in trapping aqueous phase peroxyls is at least an order of magnitude less than that of Trolox. When peroxidation is initiated in the bilayer phase of DLPC with azobis(2,4-dimethylvaleronitrile), GSH is not an effective co-antioxidant with either vitamin E in the bilayer or Trolox in the water. Comparatively higher ratios of GSH to E (GSH/E = 50) or Trolox (GSH/Trolox = 30) are required to give significant extensions of the E or Trolox induction periods. GSH is estimated to preserve only approximately one vitamin E or Trolox molecule for a hundred GSH for peroxidations initiated in the DLPC bilayers. From the kinetic studies and GSH decay studies during inhibition periods, it is concluded that GSH does not act synergistically by regenerating ArOH from the phenoxyl, ArO, radical of vitamin E or Trolox. The mode of antioxidant action of GSH is concluded to be that of trapping peroxyl radicals in the aqueous phase and thereby indirectly sparing vitamin E in the bilayer.  相似文献   

5.
A range of catechins and oligomeric procyanidins was purified by high performance liquid chromatography (HPLC) from grape seed, apple skin, lentil and almond flesh. Catechins, galloylated epicatechin, glycosylated catechin, procyanidin dimers, galloylated dimers, trimer, and tetramer species were all identified, purified and quantified by HPLC, LC-MS and NMR. The antioxidant properties of these compounds were assessed using two methods: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; (b) scavenging of the radical cation of 2,2'-azinobis(3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). Antioxidant activity in the lipid phase decreased with polymerisation in contrast with antioxidant action in the aqueous phase which increased from monomer to trimer and then decreased from trimer to tetramer. Galloylation of catechin and dimeric procyanidins decreased lipid phase and increased aqueous phase antioxidant activity. Glycosylation of catechin demonstrated decreased activity in both phases.  相似文献   

6.
A range of catechins and oligomeric procyanidins was purified by high performance liquid chromatography (HPLC) from grape seed, apple skin, lentil and almond flesh. Catechins, galloylated epicatechin, glycosylated catechin, procyanidin dimers, galloylated dimers, trimer, and tetramer species were all identified, purified and quantified by HPLC, LC-MS and NMR. The antioxidant properties of these compounds were assessed using two methods: (a) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; (b) scavenging of the radical cation of 2,2′-azinobis(3-ethyl-benzothiazoline-6-sulphonate) (ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). Antioxidant activity in the lipid phase decreased with polymerisation in contrast with antioxidant action in the aqueous phase which increased from monomer to trimer and then decreased from trimer to tetramer. Galloylation of catechin and dimeric procyanidins decreased lipid phase and increased aqueous phase antioxidant activity. Glycosylation of catechin demonstrated decreased activity in both phases.  相似文献   

7.
Quantitative kinetic methods of autoxidation are used to determine the antioxidant activities of two water-soluble antioxidants of the chromanol type, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and 6-hydroxy-2,5,7,8- tetramethyl-2-N,N,N-trimethylethanaminium methylbenzene-sulfonate (MDL 73404), during free radical peroxidation of phospholipid membranes of different charge types. The stoichiometric factor (n) for peroxyl radical trapping for both Trolox and MDL 73404 was found to be 2. Trolox was found to partition partially, approximately 20%, into the lipid phase of liposomes. The antioxidant activity of Trolox during peroxidation of membranes determined by measurements of the absolute rate constant for inhibition of oxygen uptake,kinh, was found to vary with the membrane surface charge that is controlled by variation in pH. When peroxidation is initiated in the lipid phase by azo-bis-2,4-dimethylvaleronitrile (ADVN), using a typical zwitterionic liposome, dilinoleoylphosphatidyl choline (DLPC), the kinh was found to be 2.98 × 103 M−1s−1. The kinh of Trolox increased approximately 2-fold for membranes that have positive surface, including DLPC at pH 4, DLPC containing stearylamine at pH 7, and for a membrane of dimyristoylphosphatidic acid containing linoleic acid (DMPA/LA). Conversely, Trolox does not inhibit peroxidation of negatively charged dilinoleoylphosphatidyl glycerol (DLPG) at pH 7–11. Studies made of the positively charged MDL 73404 show that its antioxidant activity using DLPC and DLPG is pH dependent. Trolox inhibits the peroxidations of DLPC initiated in the aqueous phase by azo-bis(2-amidinopropane·HCl)(ABAP) at pH 4 or 7. However, Trolox does not inhibit the peroxidation of DLPG at pH 7. The different antioxidant activities of Trolox and MDL 73404 are rationalized in terms of a peroxyl-radical diffusion model and specific charge interactions between antioxidants and membrane surface.  相似文献   

8.
Summary

Indole-3-acetic acid (IAA) enhanced the peroxidase-induced lipid peroxidation in phosphatidylcholine liposomes, as measured by loss of fluorescence of cis-parinaric acid. α-Tocopherol or β-carotene in the lipid phase or ascorbate or Trolox in the aqueous phase inhibited the loss of fluorescence induced by the peroxidase + IAA system, but glutathione had only a small inhibitory effect. The peroxyl radical formed by one-electron oxidation of IAA, followed by decarboxylation and reaction with oxygen, is suggested to act as the initiator of lipid peroxidation. The protection by ascorbate or Trolox is explained by the reactivity of these compounds with the IAA indolyl radical, as shown by pulse radiolysis experiments, whereas the weak effect of glutathione agrees with its low reactivity towards the IAA-derived peroxyl radical and its precursors.  相似文献   

9.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever α-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+-dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox.

When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+/Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

10.
Gallocatechins and a range of prodelphinidins were purified by high performance liquid chromatography from pomegranate peel. Gallocatechin, gallocatechin-(4-8)-catechin, gallocatechin-(4-8)-gallocatechin and catechin-(4-8)-gallocatechin were all identified, purified and quantified by LC-DAD-MS and MS-MS. The antioxidant properties of these compounds were assessed using two methods: (i) inhibition of ascorbate/iron-induced peroxidation of phosphatidylcholine liposomes; and (ii) scavenging of the radical cation of 2,2-azinobis (3-ethyl-benzothiazoline-6-sulphonate, ABTS) relative to the water-soluble vitamin E analogue Trolox C (expressed as Trolox C equivalent antioxidant capacity, TEAC). The prodelphinidin dimers were potent antioxidants in the aqueous phase, being much more effective than the gallocatechin monomer. However, in the lipid phase, only one of the dimers (gallocatechin-(4-8)-catechin) was significantly more effective than the monomer in the inhibition of lipid peroxidation of phosphatidylcholine vesicles. This study represents the first report on the antioxidant properties of prodelphinidins.  相似文献   

11.
This work stresses the need to combine antioxidant assays and drug-membrane interaction studies to describe more accurately the antioxidant profile of non-steroidal anti-inflammatory drugs (NSAIDs). Different experiments performed in liposomes and aqueous solution were compared and used to evaluate the protective effect of etodolac in lipid peroxidation. Lipid peroxidation was induced by the peroxyl radical (ROO*) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydroxyl radical (HO*) generated by the Fenton reaction and was assessed by the fluorescence intensity decay of three fluorescence probes with distinct lipophilic properties--fluorescein; hexadecanoyl aminofluorescein (HDAF) and diphenylhexatriene propionic acid (DPHPA). Membrane fluidity changes due to lipid peroxidation were also evaluated by steady-state anisotropy measurements. Interactions of etodolac with lipid bilayers were evaluated by membrane zeta-potential measurements. Results indicate a drug location near the membrane surface and show that etodolac can scavenge the radicals studied but to a variable extent, depending on the assayed media and reactive species. The use of different probes and liposomes as membrane mimetic systems allowed us to conclude that membrane lipoperoxidation is not only related to the scavenging characteristics of the antioxidants, but also to their ability to interact with lipid bilayers.  相似文献   

12.
Abstract

This work stresses the need to combine antioxidant assays and drug–membrane interaction studies to describe more accurately the antioxidant profile of non-steroidal anti-inflammatory drugs (NSAIDs). Different experiments performed in liposomes and aqueous solution were compared and used to evaluate the protective effect of etodolac in lipid peroxidation. Lipid peroxidation was induced by the peroxyl radical (ROO?) derived from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) and hydroxyl radical (HO?) generated by the Fenton reaction and was assessed by the fluorescence intensity decay of three fluorescence probes with distinct lipophilic properties – fluorescein; hexadecanoyl aminofluorescein (HDAF) and diphenylhexatriene propionic acid (DPHPA). Membrane fluidity changes due to lipid peroxidation were also evaluated by steady-state anisotropy measurements. Interactions of etodolac with lipid bilayers were evaluated by membrane zeta-potential measurements. Results indicate a drug location near the membrane surface and show that etodolac can scavenge the radicals studied but to a variable extent, depending on the assayed media and reactive species. The use of different probes and liposomes as membrane mimetic systems allowed us to conclude that membrane lipoperoxidation is not only related to the scavenging characteristics of the antioxidants, but also to their ability to interact with lipid bilayers.  相似文献   

13.
Trolox C (Trolox), a water-soluble analogue of vitamin E lacking the phytyl chain, was investigated with respect to its effect on the oxidation of low-density lipoprotein (LDL). Trolox was added at different time points of LDL oxidation induced by Cu2+ and aqueous peroxyl radicals. In the case of Cu2+ -induced LDL oxidation, the effect of Trolox changed from antioxidant to prooxidant when added at later time points during oxidation; this transition occurred whenever alpha-tocopherol was just consumed in oxidizing LDL. Thus, in the case of Cu2+ -dependent LDL oxidation, the presence of lipophilic antioxidants in the LDL particle is likely to be a prerequisite for the antioxidant activity of Trolox. When oxidation was induced by peroxyl radicals, as a model of metal-independent oxidation, the effect of Trolox was always antioxidant, suggesting the importance of Cu2+ /Cu+ redox-cycling in the prooxidant mechanism of Trolox. Our data suggest that, in the absence of significant amounts of lipophilic antioxidants, LDL becomes highly susceptible to oxidation induced by transition metals in the presence of aqueous reductants.  相似文献   

14.
The antioxidant behaviors of vitamin E and its analogues, 2, 2, 5, 7, 8-pentamethyl-6-hydroxychroman and l, 2-diacyl-sn-glycero-3-phospho-2?-(hydroxyethyl)-2?, 5?, 7?, 8?-tetramethyl-6?-hydroxychro-man, were studied in unilamellar vesicles. The two analogues scavenged aqueous radicals generated from azo compounds more efficiently than vitamin E. On the other hand, vitamin E scavenged the lipid peroxyl radicals preferentially. It is concluded that the superior antioxidant activity of vitamin E is attributed to its location suitable for breaking the chain propagation reaction.  相似文献   

15.
BN 80933, a dual inhibitor of neuronal nitric oxide synthase and lipid peroxidation, prevents in vivo brain ischemic/reperfusion injury. In the present study, BN 80933 was shown to protect neurons from hypoxia-induced cell death in primary cultures of cortical neurons. BN 80933 prevented lactate dehydrogenase activity elevation induced by hypoxia, displaying an IC50 value of 0.15 +/- 0.05 microM. This effect was likely due to the antioxidant properties of BN 80933 because Trolox, but not NG-nitro-L-arginine, also elicited protection. The antioxidant property of BN 80933 was then further investigated on HT-22 cells subjected to buthionine sulfoximine- or glutamate-induced glutathione depletion. The relative order of potency of the various compounds to inhibit oxidative stress-induced neuronal death (BN 80933 > U104067 > butylated hydroxytoluene > 17beta-estradiol > Trolox > vitamin E) correlated with their ability to inhibit brain membrane lipid peroxidation (correlation coefficient = 0.939). BN 80933 afforded protection even when added 6 h after glutamate exposure. BN 80933 did not reverse intracellular glutathione depletion but prevented elevation of the level of beta-epiprostaglandin F2alpha (8-isoprostane), which appeared to be a delayed phenomenon. In conclusion, BN 80933 induces a potent cytoprotection that may be mediated by inhibition of delayed lipid peroxidation.  相似文献   

16.
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO*) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of sulindac and its metabolites was tested and related with their membrane interactions. Drug-membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media.  相似文献   

17.
Non-steroidal anti-inflammatory drugs (NSAIDs) treat inflammatory processes by inhibition of cycloxygenase (COX). However, their action against lipid peroxidation can be an alternative pathway to COX inhibition. Since inflammation and lipid peroxidation are cell-surface phenomena, the effects of NSAIDs on membrane models were investigated. Peroxidation was induced by peroxyl radical (ROO?) derived from AAPH and assessed in aqueous or lipid media using fluorescence probes with distinct lipophilic properties: fluorescein; HDAF and DPH-PA. The antioxidant effect of Sulindac and its metabolites was tested and related with their membrane interactions. Drug–membrane interactions included the study of: drug location by fluorescence quenching; drug interaction with membrane surface by zeta-potential measurements; and membrane fluidity changes by steady-state anisotropy. Results revealed that the active NSAID (sulindac sulphide) penetrates into the lipid bilayer and protects the membrane against oxy-radicals. The inactive forms (sulindac and sulindac sulphone) present weaker interactions with the membrane and are better radical scavengers in aqueous media.  相似文献   

18.
A comparison is made of the antioxidant activity of a water-soluble form of alpha-tocopherol complexed with bovine serum albumin (alpha-T X BSA) with that of micellar alpha-tocopherol and aqueous 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox) to inhibit autoxidation of linoleic acid in sodium dodecyl sulfate micelles. The peroxyl radical trapping ability of alpha-T X BSA compares favorably with that of alpha-tocopherol and Trolox, and all three can be used in quantitative measurements of the susceptibility of the micellar substrate to undergo autoxidation: the oxidizability, for reactions initiated in the micellar phase by di-tertbutylhyponitrite (DBHN) or in the aqueous phase by azobisamidinopropane hydrochloride (ABAP). alpha-Tocopherol and Trolox are also effective antioxidants to inhibit DBHN- or ABAP-initiated autoxidations of dilinoleoylphosphatidylcholine (DLPC) liposomes prepared as multilamellar or unilamellar bilayers characterized by 31P NMR spectra. The oxidizability of DLPC liposomes is determined by various combinations of water-soluble and lipid-soluble initiators and the antioxidants, alpha-tocopherol and Trolox. In contrast, alpha-T X BSA does not effectively trap peroxyl radicals when it is added after initiation of autoxidation in the lipid phase (DBHN) or in the aqueous phase (ABAP). The radical trapping ability of alpha-T X BSA becomes evident if it is mixed with the DLPC for some hours before initiation. This result is interpreted in terms of diffusion of alpha-tocopherol from the bound alpha-T X BSA form to the liposome before it exhibits antioxidant activity.  相似文献   

19.
The peroxidation of human erythrocytes induced by peroxyl radical initiator and its inhibition by several gallate esters (e.g., propyl, methyl, ethyl) and Trolox (a more polar analogue of vitamin E) have been studied. The antioxidant activity was determined on erythrocytes against hemolysis generated by a thermal activator, 2,2'-azobis-(2-amidinopropane)dihydrogenchloride. It was found that propyl gallate and its two analogues were more effective than Trolox in preventing cell lysis. However, the combination of gallate esters and Trolox produced a protective effect exceeding the arithmetic sum of their individual contributions. These perceived synergisms occur at more than one level of Trolox at a given level of a gallate ester.  相似文献   

20.
In vitro lipid peroxidation initiated by NADPH/ADP/Fe3+ reveals an alteration of rat liver microsomal antioxidant factors at day D+4 after whole-body gamma irradiation (8Gy). This alteration is partly reversed by GSH, and more efficiently by Trolox C, a water-soluble analog of vitamin E. This reversion by Trolox C, together with the observed 50% decrease in vitamin E content in microsomes of irradiated rats as compared to those of control animals, indicate that Trolox C acts as a free-radical scavenger like and in place of vitamin E. The antioxidant action of Trolox C is not improved in the presence of GSH, which suggests that the former acts earlier than the latter on the autoxidative free-radical chain reactions. Neither GSH, nor Trolox C, nor both antioxidants totally inhibit in vitro lipid peroxidation, which appeals attention on the possible role of extra-microsomal antioxidant factors, especially cytosolic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号