首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The sequence elements determining the binding of the sigma54-containing RNA polymerase (sigma54-RNAP) to the Pu promoter of Pseudomonas putida have been examined. Contrary to previous results in related systems, we show that the integration host factor (IHF) binding stimulates the recruitment of the enzyme to the -12/-24 sequence motifs. Such a recruitment, which is fully independent of the activator of the system, XylR, requires the interaction of the C-terminal domain of the alpha subunit of RNAP with specific DNA sequences upstream of the IHF site which are reminiscent of the UP elements in sigma70 promoters. Our data show that this interaction is mainly brought about by the distinct geometry of the promoter region caused by IHF binding and the ensuing DNA bending. These results support the view that binding of sigma54-RNAP to a promoter is a step that can be subjected to regulation by factors (e.g. IHF) other than the sole intrinsic affinity of sigma54-RNAP for the -12/-24 site.  相似文献   

7.
Park S  Zhang H  Jones AD  Nixon BT 《Biochemistry》2002,41(36):10934-10941
X-ray crystal structures suggest very different dimeric states for the inactive and active forms of the two-component receiver domain of Sinorhizobium meliloti DctD, a sigma(54)-dependent AAA+ ATPase. Moreover, the receiver domain in crystals grown from unphosphorylated protein is refractory to phosphorylation whereas solution protein is fully phosphorylatable, and equilibrium analytical ultracentrifugation data are consistent with solution dimers for both phosphorylated and unphosphorylated forms of the protein. Here we report biochemical data consistent with the presence of multiple dimeric conformations in the inactive and active states, and evidence for significant change in the dimeric state upon activation by phosphorylation or binding of Mg(2+) and BeF(3)(-).  相似文献   

8.
The LevR protein is the activator of expression of the levanase operon of Bacillus subtilis. The promoter of this operon is recognized by RNA polymerase containing the sigma 54-like factor sigma L. One domain of the LevR protein is homologous to activators of the NtrC family, and another resembles antiterminator proteins of the BglG family. It has been proposed that the domain which is similar to antiterminators is a target of phosphoenolpyruvate:sugar phosphotransferase system (PTS)-dependent regulation of LevR activity. We show that the LevR protein is not only negatively regulated by the fructose-specific enzyme IIA/B of the phosphotransferase system encoded by the levanase operon (lev-PTS) but also positively controlled by the histidine-containing phosphocarrier protein (HPr) of the PTS. This second type of control of LevR activity depends on phosphoenolpyruvate-dependent phosphorylation of HPr histidine 15, as demonstrated with point mutations in the ptsH gene encoding HPr. In vitro phosphorylation of partially purified LevR was obtained in the presence of phosphoenolpyruvate, enzyme I, and HPr. The dependence of truncated LevR polypeptides on stimulation by HPr indicated that the domain homologous to antiterminators is the target of HPr-dependent regulation of LevR activity. This domain appears to be duplicated in the LevR protein. The first antiterminator-like domain seems to be the target of enzyme I and HPr-dependent phosphorylation and the site of LevR activation, whereas the carboxy-terminal antiterminator-like domain could be the target for negative regulation by the lev-PTS.  相似文献   

9.
10.
The first sigma(54) promoters in Chlamydia trachomatis L2 were mapped upstream of hypothetical proteins CT652.1 and CT683. Comparative genomics indicated that these sigma(54) promoters and potential upstream activation binding sites are conserved in orthologous C. trachomatis D, C. trachomatis mouse pneumonitis strain, and Chlamydia pneumoniae (CWL029 and AR39) genes.  相似文献   

11.
12.
13.
14.
15.
Human pathogenic protozoa of the genus Leishmania undergo various developmental transitions during the infectious cycle that are triggered by changes in the host environment. How these parasites sense, transduce, and respond to these signals is only poorly understood. Here we used phosphoproteomic approaches to monitor signaling events in L. donovani axenic amastigotes, which may be important for intracellular parasite survival. LC-ESI-MS/MS analysis of IMAC-enriched phosphoprotein extracts identified 445 putative phosphoproteins in two independent biological experiments. Functional enrichment analysis allowed us to gain insight into parasite pathways that are regulated by protein phosphorylation and revealed significant enrichment in our data set of proteins whose biological functions are associated with protein turn-over, stress response, and signal transduction. LC-ESI-MS/MS analysis of TiO(2)-enriched phosphopeptides confirmed these results and identified 157 unique phosphopeptides covering 181 unique phosphorylation sites in 126 distinct proteins. Investigation of phosphorylation site conservation across related trypanosomatids and higher eukaryotes by multiple sequence alignment and cluster analysis revealed L. donovani-specific phosphoresidues in highly conserved proteins that share significant sequence homology to orthologs of the human host. These unique phosphorylation sites reveal important differences between host and parasite biology and post-translational protein regulation, which may be exploited for the design of novel anti-parasitic interventions.  相似文献   

16.
Taking advantage of the known sequence conservation of portions of bacterial sigma factor proteins, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction (PCR) to amplify DNA sequences from the chlamydial genome. The PCR products were used as a probe to recover the genomic fragments from a library of cloned murine Chlamydia trachomatis DNA. Sequence analysis of one of these clones revealed striking homology to the sigma-70 protein of Escherichia coli and the sigma-43 protein of Bacillus subtilis, strongly implying that this locus (sigA) encodes the major vegetative sigma factor of murine C. trachomatis. This PCR-based approach will be broadly applicable to the cloning of major sigma factors from other eubacteria.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号