首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The rate of oxidation of 14C-labelled fatty acids and of ketone bodies was measured in isolated pancreatic islets of obese-hyperglycaemic mice (ob/ob). The following main observations were made. 1. Octanoate, palmitate and oleate were all converted into CO2 by the pancreatic islets. Octanoate was oxidized with the highest rate followed by palmitate and oleate. 2. The rate of oxidation of 0.7 mM-palmitate was 3.1 pmol/h per mug drug weight. This was decreased by 50% in the presence of 16.7 mM-glucose. The rate of palmitate oxidation was also inhibited by 2-bromostearate. The palmitate oxidation showed a concentration-dependent increase, which was most marked between 0.25 and 1.0 mM. 3. Octanoate (5 mM) had no effect on the rate of oxidation of 3.3 mM- glucose. 4. Acetoacetate (5 mM) and D-3-hydroxybutyrate (5 mM) were oxidized at rates of 5.9 and 5.4 pmol/h per mug dry weight respectively. These rates were less than 10% of those found in kidney-cortex slices. The magnitude of the oxidation rates found for fatty acids and for ketone bodies suggest that these substrates represent important metabolic fuels for the pancreatic B-cells.  相似文献   

2.
When islets from mice were incubated with 16.7 mM-glucose, previous starvation for 48 h decreased the rate of insulin release by approx. 50% and glucose utilization was decreased by approx. 35%. The maximally extractable activity of glucose 6-phosphate dehydrogenase was diminished by 28% after starvation. The formation of 14CO2 from both [1-14C]glucose was, however, higher than the rate of oxidation of [6-14C]-glucose in islets from both fed and starved mice. The fraction of glucose utilized that was oxidized (specific 14CO2 yield) ranged from one-fifth to one-third and was higher in islets from starved mice with both [1-14C]glucose and [6-14C]glucose as substrate. The contribution of pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose-cycle oxidation to total glucose metabolism was small (3% in the fed state and 4% in the starved state). The absolute rates of glucose carbon metabolism via the pentose cycle and the turnover of NADPH in this pathway were identical in islets from fed and starved animals. After incubation at 16.7 mM-glucose for 30 min the contents of glucose (6-phosphate and 6-phosphogluconate were both unchanged by starvation. It is concluded that there is no correlation between the decreased sensitivity of the insulin secretory mechanism during starvation and the metabolism of glucose via the pentose cycle, the islet content of glucose 6-phosphate or 6-phosphogluconate.  相似文献   

3.
1. In isolated pancreatic islets, pyruvate causes a shift to the left of the sigmoidal curve relating the rate of insulin release to the ambient glucose concentration. The magnitude of this effect is related to the concentration of pyruvate (5--90 mM) and, at a 30 mM concentration, is equivalent to that evoked by 2 mM-glucose. Pyruvate also enhances insulin release in the presence of fructose, leucine and 4-methyl-2-oxopentanoate. 2. In the presence of glucose 8 mM), the secretory response to pyruvate is an immediate process, displaying a biphasic pattern. 3. The insulinotropic action of pyruvate coincides with an inhibition of 45Ca efflux and a stimulation of 45Ca net uptake. The relationship between 45Ca uptake and insulin release displays its usual pattern in the presence of pyruvate. 4. Exogenous pyruvate rapidly accumulates in the islets in amounts close to those derived from the metabolism of glucose. The oxidation of [2-14C]pyruvate represents 64% of the rate of [1-14C]pyruvate decarboxylation and, at a 30 mM concentration, is comparable with that of 8 mM-[U-14C]glucose. 5. When corrected for the conversion of pyruvate into lactate, the oxidation of 30 mM-pyruvate corresponds to a net generation of about 314 pmol of reducing equivalents/120 min per islet. 6. Pyruvate does not affect the rate of glycolysis, but inhibits the oxidation of glucose. Glucose does not affect pyruvate oxidation. 7. Pyruvate (30 mM) does not affect the concentration of ATP, ADP and AMP in the islet cells. 8. Pyruvate (30 mM) increases the concentration of reduced nicotinamide nucleotides in the presence but not in the absence of glucose. A close correlation is seen between the concentration of reduced nicotinamide nucleotides and the net uptake of 45Ca. Menadione inhibits the effect of pyruvate on insulin release, without altering its rate of oxidation. 9. Pyruvate, like glucose, modestly stimulates lipogenesis. 10. Pyruvate, in contrast with glucose, markedly inhibits the oxidation of endogenous nutrients. The latter effect accounts for the apparent discrepancy between the rate of pyruvate oxidation and the magnitude of its insulinotropic action. 11. Dichloroacetate fails to affect glucose oxidation and glucose-stimulated insulin release. 12. It is concluded that the effect of pyruvate to stimulate insulin release depends on its ability to increase the concentration of reduced nicotinamide nucleotides in the islet cells.  相似文献   

4.
1. Dose-dependent effects of adrenaline on PDHa activity were investigated with both incubated rat epidiymal fat-pads and isolated adipocytes. 2. Adrenaline (10nM- 5 micrometer) decreased PDHa activity in fat-pads incubated with 5 mM-[U-14C]glucose + insulin (20 munits/ml). Changes in [U-14C]glucose incorporation into fatty acids in these tissues correlated only loosely with changes in PDHa activity. There was a good inverse relationship between adrenaline-induced changes in PDHa activity and increases in lipolysis (glycerol release). 3. Adrenaline (10nM - 0.5 micrometer) decreased PDHa activity in fat-pads incubated with 5 mM-[U-14C]pyruvate + insulin (20 munits/ml), whereas 1 micrometer- and 5 micrometer-adrenaline slightly increased PDHa activity. All concentrations of adrenaline tested decreased [U-14C]pyruvate incorporation into fatty acids. Between 10nM- and 0.5 micrometer-adrenaline percentage decreases in PDHa activity paralleled decreases in faty acid synthesis. 4. Effects of adrenaline on PDHa activity and fatty acid synthesis in fat-pads incubated with 5mM-[U-14C]pyruvate + insulin (20 munits/ml) could not be mimicked by addition of albumin-bound palmitate. 5. The response of PDHa activity to adrenaline (0.1 nM - 1 micrometer) in isolated adipocytes differed with the carbohydrate substrate used in the incubations. With 5 mM-glucose + insulin (20 munits/ml), PDHa activity was significantly increased by 10 nM-adrenaline, but not by 1 micrometer-adrenaline, the response to adrenaline being biphasic. There was some correlation between PDHa activity and accumulation of non-esterified fatty acids. With 5 mM-glucose alone adrenaline (0.1 nM - 1 micrometer) had no effect on PDHa activity even though lipolysis was increased by adrenaline (0.1 micrometer - 1 micrometer). With 5mM-fructose in the presence and absence of insulin, lipolytic doses of adrenaline decreased PDHa activity. No tested concentrations of adrenaline increased PDHa with this substrate. 6. In the presence of 5 mM-fructose, palmitate was significantly more effective than adrenaline with respect to the maximum decrease in PDHa activity that could be elicited. 4. The relationship of changes in PDHa activity to changes in lipogenesis and the likelihood of adrenaline-induced changes in PDHa activity being secondary to changes in non-esterified fatty acid metabolism are discussed.  相似文献   

5.
The rate of insulin secretion from isolated rat islets of Langerhans was affected by a number of dihydropyridine derivatives known to interact with voltage-sensitive Ca2+ channels in excitable cells. The channel antagonists nifedipine and nitrendipine were potent inhibitors of glucose-induced insulin secretion in response to both 8 mM- and 20 mM-glucose, although they did not lower the basal secretion rate observed in the presence of 4 mM-glucose. The Ca2+-channel agonist, CGP 28392, also failed to alter the basal rate of insulin secretion. In the presence of 8 mM-glucose, however, 1 microM-CGP 28392 enhanced the insulin-secretion rate to a value approximately double that with 8 mM-glucose alone. This effect was dose-dependent, with half the maximal response elicited by 0.1 microM-CGP 28392, and full enhancement at 10 microM. The response was rapid in onset, with an increase in insulin secretion evident within 2 min of CGP 28392 infusion in perifused islets. Stimulation of insulin secretion by CGP 28392 was correlated with a rapid enhancement of glucose-stimulated 45Ca2+ uptake into islets cells, and with a transiently increased rate of 45Ca2+ efflux from pre-loaded islets. Stimulation of insulin secretion by CGP 28392 was abolished in the presence of noradrenaline, although under these conditions the rapid stimulation of 45Ca2+ influx induced by CGP 28392 was only partially inhibited. In contrast with these results, when islets were incubated in the presence of 20 mM-glucose, CGP 28392 caused a dose-dependent inhibition of insulin secretion. Half-maximal inhibition required approx. 0.2 microM-CGP 28392, with maximal effects observed at 10 microM. Under these conditions, however, the extent of insulin secretion was still only decreased by about 50%, to a value which was similar to that seen in the presence of 8 mM-glucose and CGP 28392. These results suggest that dihydropyridine derivatives can alter the activity of voltage-dependent Ca2+ channels in islet cells, and are consistent with the possibility that gating of these channels plays an important role in regulating the rate of insulin secretion after glucose stimulation.  相似文献   

6.
Isolated rat islets were incubated with myo-[2-3H]inositol for 2 h to label their phosphoinositide (PI) pools. Labelling was carried out under three separate conditions: in media containing low (2.75 mM) glucose, high (13.75 mM) glucose, or low (2.75 mM) glucose plus sulphated cholecystokinin (CCK-8S; 200 nM). After labelling, the islets were perifused and the insulin-secretory response to 20 mM-glucose was measured. PI hydrolysis in these same islets was assessed by measurements of both [3H]inositol efflux and the accumulation of labelled inositol phosphates. The following major observations were made. After prelabelling for 2 h in low glucose, perifusion with 20 mM-glucose resulted in a biphasic insulin-secretory response, an increase in [3H]inositol efflux and a parallel increase in the accumulation of labelled inositol phosphates. After prelabelling in high (13.75 mM) glucose, peak first-phase insulin secretion induced by 20 mM-glucose increased 2-2.5-fold, whereas the second phase of insulin release, as well as [3H]inositol efflux and inositol phosphate accumulation, were significantly decreased. The simultaneous infusion of the diacylglycerol kinase inhibitor 1-mono-oleoylglycerol (50 microM), along with 20 mM-glucose, restored the second-phase insulin-secretory response from these islets. After labelling in low (2.75 mM) glucose plus CCK-8S, the initial phases of the insulin-secretory and [3H]inositol-efflux responses to 20 mM-glucose were blunted and the sustained phases of both responses were markedly decreased. Inositol phosphate accumulation was also impaired. Labelling islets in high (13.75 mM) glucose or low (2.75 mM) glucose plus CCK-8S suppresses, in a parallel fashion, glucose-induced increases in PI hydrolysis and in second-phase insulin release. These findings suggest that desensitization of the insulin-secretory response is a consequence of impaired information flow in the inositol lipid cycle.  相似文献   

7.
Inosine is a potent primary stimulus of insulin secretion from isolated mouse islets. The inosine-induced insulin secretion was totally depressed during starvation, but was completely restored by the addition of 5 mM-caffeine to the medium and partially restored by the addition of 5 mM-glucose. Mannoheptulose (3 mg/ml) potentiated the effect of 10 mM-inosine in islets from fed mice. The mechanism of the stimulatory effect of inosine was further investigated, and it was demonstrated that pancreatic islets contain a nucleoside phosphorylase capable of converting inosine into hypoxanthine and ribose 1-phosphate. Inosine at 10 mM concentration increased the lactate production and the content of ATP, glucose 6-phosphate (fructose 1,6-diphosphate + triose phosphates) and cyclic AMP in islets from fed mice. In islets from starved mice inosine-induced lactate production was decreased and no change in the concentration of cyclic AMP could be demonstrated, whereas the concentration of ATP and glucose 6-phosphate rose. Inosine (10 mM) induced a higher concentration of (fructose 1,6-diphosphate + triose phosphates) in islets from starved mice than in islets from fed mice suggesting that in starvation the activities of glyceraldehyde 3-phosphate dehydrogenase or other enzymes below this step in glycolysis are decreased. Formation of glucose from inosine was negligible. Inosine had no direct effect on adenylate cyclase activity in islet homogenates. The observed changes in insulin secretion and islet metabolism mimic what is seen when glucose and glyceraldehyde stimulate insulin secretion, and as neither ribose nor hypoxanthine-stimulated insulin release, the results are interpreted as supporting the substrate-site hypothesis for glucose-induced insulin secretion according to which glucose has to be metabolized in the beta-cells before secretion is initiated.  相似文献   

8.
The aim of the present study was to evaluate the possible role for polyamines in the glucose regulation of the metabolism of insulin mRNA of pancreatic islet cells. For this purpose islets were prepared from adult mice and cultured for 2 days in culture medium RPMI 1640 containing 3.3 mM- or 16.7 mM-glucose with or without the addition of the inhibitors of polyamine biosynthesis difluoromethylornithine (DFMO) and ethylglyoxal bis(guanylhydrazone) (EGBG). Culture at the high glucose concentration increased the islet contents of both insulin mRNA and polyamines. The synthesis of total RNA, total islet polyamines and polyamines associated with islet nuclei was also increased. When the combination of DFMO and EGBG was added in the presence of 16.7 mM-glucose, low contents of insulin mRNA, spermine and spermidine were observed. Total islet polyamine synthesis was also depressed by DFMO + EGBG, unlike islet biosynthesis of polyamines associated with nuclei, which was not equally decreased by the polyamine-synthesis inhibitors. Total RNA synthesis and turnover was not affected by DFMO + EGBG. Finally, actinomycin D attenuated the glucose-induced enhancement of insulin mRNA, and cycloheximide counteracted the insulin-mRNA attenuation induced by inhibition of polyamine synthesis. It is concluded that the glucose-induced increase in insulin mRNA is paralleled by increased contents and rates of polyamine biosynthesis and that an attenuation of the increase in polyamines prevents the increase in insulin mRNA. In addition, the results are compatible with the view that polyamines exert their effects on insulin mRNA mainly by increasing the stability of this messenger.  相似文献   

9.
To extend previous observations on the mechanisms of translational regulation of insulin biosynthesis [Welsh, Scherberg, Gilmore & Steiner (1986) Biochem. J. 235, 459-467], we have now compared the intracellular distributions of insulin mRNA after stimulation of insulin biosynthesis by glucose, leucine or theophylline. In comparison with low glucose (3.3 mM) only, the presence of 10 mM-leucine + 3.3 mM-glucose resulted in the transfer of insulin mRNA from the pool of the uninitiated mRNA to the free polysome/monosome fraction and an increase in the amount of insulin mRNA associated with the microsomal fraction. Islets exposed to 5 mM-theophylline + 3.3 mM-glucose also showed a decreased content of uninitiated insulin mRNA in the cytosol, but these islets showed no increase in insulin mRNA in the microsomal fraction. These results suggest that leucine, a nutrient stimulant of insulin biosynthesis, acts essentially by the same mechanisms as those of glucose, whereas theophylline acts only to stimulate initiation rates.  相似文献   

10.
The release of carboxypeptidase H activity from isolated rat islets was determined and compared to the secretion of immunoreactive insulin. Analysis of pancreatic islet cells sorted into beta and non-beta types indicated that approx. 80% of islet carboxypeptidase H activity is present in the beta cell. The release of both insulin and carboxypeptidase H was stimulated markedly by increasing the glucose concentration in the medium from 2.8 to 28 mM. The fractional release was in accordance with the observed cellular distribution of both proteins. The secretory response was biphasic with time, with an initial rapid transient phase of release within 5 min, followed by a more sustained response. The concentration-dependencies of glucose stimulation of release of insulin and carboxypeptidase H were similar, with a threshold for stimulation around 5.6 mM-glucose and maximal stimulatory response at 16.7-28 mM-glucose. The release of both proteins was inhibited by 20 mM-mannoheptulose, removal of Ca2+ from the medium and addition of 1 microM-noradrenaline. The combination of 10 mM-4-methyl-2-oxopentanoate and 10 mM-glutamine stimulated the release of carboxypeptidase H and insulin, as did 3-isobutyl-1-methylxanthine and 350 microM-tolbutamide in the presence of glucose. It is evident that carboxypeptidase H is released from the pancreatic beta-cell by an exocytotic process from the same intracellular compartment as insulin. The release of carboxypeptidase H by a constitutive process was at best equivalent to 0.4%/h, or less than 2% of the maximal rate of release via the regulated pathway. It is concluded that carboxypeptidase H can be used as a sensitive index of beta-cell secretion and an alternative marker to the insulin-related peptides.  相似文献   

11.
Effects on insulin release, cyclic AMP content and protein phosphorylation of agents modifying cyclic AMP levels have been tested in intact rat islets of Langerhans. Insulin release induced by glucose was potentiated by dibutyryl cyclic AMP, glucagon, cholera toxin and 3-isobutyl-1-methylxanthine (IBMX); the calmodulin antagonist trifluoperazine reversed these potentiatory effects. Inhibition by trifluoperazine of IBMX-potentiated release was, however, confined to concentrations of IBMX below 50 microM; higher concentrations, up to 1 mM, were resistant to inhibition by trifluoperazine. IBMX-potentiated insulin release was also inhibited by 2-deoxyadenosine, an inhibitor of adenylate cyclase. In the absence of glucose, IBMX at concentrations up to 1 mM did not stimulate insulin release and in the presence of 3.3 mM-glucose IBMX was effective only at a concentration of 1 mM; under the latter conditions trifluoperazine again did not inhibit insulin secretion. The maximum effect on insulin release was achieved with 25 microM-IBMX. Islet [cyclic AMP] was increased by IBMX, with the maximum rise occurring with 100 microM-IBMX. The increase in [cyclic AMP] elicited by IBMX was more rapid than that induced by cholera toxin. Trifluoperazine did not significantly affect islet cyclic AMP levels under any of the conditions tested. When islets were incubated with [32P]Pi, radioactivity was incorporated into islet ATP predominantly in the gamma-position. The rate of equilibration of label was dependent on medium Pi and glucose concentration and at optimal concentrations of these 100% equilibration of internal [32P]ATP with external [32P]Pi required a period of 3h. Radioactivity was incorporated into islet protein and, in response to an increase in islet [cyclic AMP], the major effect was on a protein of Mr 15 000 on sodium dodecyl sulphate/polyacrylamide gels. The extent of phosphorylation of the Mr-15 000 protein was correlated with the level of cyclic AMP: phosphorylation in response to IBMX was inhibited by 2-deoxyadenosine but not by trifluoperazine. Fractionation of islets suggested that the Mr-15 000 protein was of nuclear origin: the protein co-migrated with histone H3 on acetic acid/urea/Triton gels. In the islet cytosol a number of proteins were phosphorylated in response to elevation of islet [cyclic AMP]: the major species had Mr values of 18 000, 25 000, 34 000, 38 000 and 48 000. Culture of islets with IBMX increased the rate of [3H]-thymidine incorporation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
1. Insulin biosynthesis in isolated rat islets of Langerhans was determined by the incorporation of [(3)H]leucine into newly synthesized islet proteins. Anti-insulin serum covalently coupled to a solid phase (CNBr-activated Sepharose 4B) was used to separate the immunoreactive proinsulin and insulin from other islet proteins. This method was applied to a study of the regulation of insulin biosynthesis in isolated rat islets of Langerhans during pregnancy, and immediately after a period of food deprivation. 2. Islets isolated from pregnant rats showed an increased basal rate of synthesis compared with the non-pregnant controls. In addition, they showed a significant increase in biosynthesis of proinsulin and insulin in comparison with the normal islets over a range of glucose concentrations of 2-20mm. 3. Addition of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine significantly increased the insulin-synthetic response of normal islets over the glucose range 5-20mm, so that their glucose response approached that of islets from pregnant rats. 4. Normal female rates were injected with a long-acting progesterone derivative (hydroxyprogesterone hexanoate), to investigate the role of progesterone on the increased insulin biosynthesis observed in islets in pregnancy. There appeared to be no marked difference in insulin biosynthesis between the islets from the progesterone-injected and control rats in the presence of 2mm- or 6mm-glucose alone. However, in the presence of 4mm- or 6mm-glucose and 3-isobutyl-1-methylxanthine there was a significant increase in insulin biosynthesis in the progesterone-treated animals. 5. Total islet protein biosynthesis was determined by the incorporation of [(3)H]leucine into trichloroacetic acid-precipitable islet proteins. Islets isolated from normal rats showed a 1.6-fold increase in incorporation over the glucose concentration range 2-20mm, and this value remained unchanged during starvation; however, rates of incorporation were significantly raised in islets isolated from pregnant rats in the presence of 20mm-glucose. 6. Islets from starved and fed control rats were incubated in the presence of increasing concentrations of glucose or glucose+3-isobutyl-1-methylxanthine. The islets isolated from the starved animals showed a diminished insulin-synthetic response to glucose as compared with the controls; this response was partially restored to normal values by elevation of cyclic AMP concentrations by using 3-isobutyl-1-methylxanthine. 7. It is suggested that the alterations in glucose-stimulated insulin biosynthesis observed in islets during pregnancy and after a period of starvation could be attributable, at least in part, to a long-term alteration of the cyclic AMP system, and in pregnancy to a direct or indirect effect of progesterone on beta-cell function.  相似文献   

13.
The role of the Ca2+/phospholipid-dependent protein kinase C (PKC) in cholinergic potentiation of insulin release was investigated by measuring islet PKC activity and insulin secretion in response to carbachol (CCh), a cholinergic agonist. CCh caused a dose-dependent increase in insulin secretion from cultured rat islets at stimulatory glucose concentrations (greater than or equal to 7 mM), with maximal effects observed at 100 microM. Short-term exposure (5 min) of islets to 500 microM-CCh at 2 mM- or 20 mM-glucose resulted in redistribution of islet PKC activity from a predominantly cytosolic location to a membrane-associated form. Prolonged exposure (greater than 20 h) of islets to 200 nM-phorbol myristate acetate caused a virtual depletion of PKC activity associated with the islet cytosolic fraction. Under these conditions of PKC down-regulation, the potentiation of glucose-stimulated insulin secretion by CCh (500 microM) was significantly decreased, but not abolished. CCh stimulated the hydrolysis of inositol phospholipids in both normal and PKC-depleted islets, as assessed by the generation of radiolabelled inositol phosphates. These results suggest that the potentiation of glucose-induced insulin secretion by cholinergic agonists is partly mediated by activation of PKC as a consequence of phospholipid hydrolysis.  相似文献   

14.
To characterize the effect of glucose on the intracellular pH (pHi) of pancreatic islet cells, we measured the accumulation of 14C-labelled 5,5-dimethyloxazolidine-2,4-dione ( [14C]DMO) in beta-cell-rich islets from ob/ob mice. D-Glucose (20 mM) stimulated insulin release and enhanced the [14C]DMO equilibrium uptake corresponding to an increase of pHi by about 0.15 unit. The glucose effect on DMO uptake was concentration-dependent, with half-maximal effect at about 4 mM-glucose and maximum effect at about 10 mM-glucose. It was inhibited by 20 mM-mannoheptulose and potentiated by 4 mM-L-5-hydroxytryptophan, but not affected by 2 mM-theophylline. Mannoheptulose is an inhibitor and L-5-hydroxytryptophan and theophylline are potentiators of glucose-stimulated insulin release. The glucose-induced increase in pHi appeared rapidly (7 min) and persisted for at least 30 min and it was observed both in bicarbonate/CO2-buffered and in Hepes [4-(2-hydroxyethyl)-1-piperazine-ethanesulphonic acid]-buffered media. Addition of extracellular bicarbonate buffer lowered the pHi, but did not affect basal insulin release, whereas 5 mM-NH4+ increased pHi and induced a 4-fold increase of basal insulin release. We conclude that, in contrast with previous assumptions, glucose increases intracellular pH in the islet cells. This effect may be coupled to the glucose metabolism and associated with triggering of insulin release.  相似文献   

15.
Glucose (20 mM) and carbachol (1 mM) produced a rapid increase in [3H]inositol trisphosphate (InsP3) formation in isolated rat islets of Langerhans prelabelled with myo-[3H]inositol. The magnitude of the increase in InsP3 formation was similar when either agent was used alone and was additive when they were used together. In islets prelabelled with 45Ca2+ and treated with carbachol (1 mM), the rise in InsP3 correlated with a rapid, transient, release of 45Ca2+ from the cells, consistent with mobilization of 45Ca2+ from an intracellular pool. Under these conditions, however, insulin secretion was not increased. In contrast, islets prelabelled with 45Ca2+ and exposed to 20mM-glucose exhibited a delayed and decreased 45Ca2+ efflux, but released 7-8-fold more insulin than did those exposed to carbachol. Depletion of extracellular Ca2+ failed to modify the increase in InsP3 elicited by either glucose or carbachol, whereas it selectively inhibited the efflux of 45Ca2+ induced by glucose in preloaded islets. Under these conditions, however, glucose was still able to induce a small stimulation of the first phase of insulin secretion. These results demonstrate that polyphosphoinositide metabolism, Ca2+ mobilization and insulin release can all be dissociated in islet cells, and suggest that glucose and carbachol regulate these parameters by different mechanisms.  相似文献   

16.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

17.
The biosynthesis of insulin in the islets of Langerhans is strongly controlled at the translational level by glucose. We have used a variety of experimental approaches in efforts to dissect the mechanisms underlying the stimulatory effect of glucose. To assess its effects on rates of peptide-chain elongation, isolated rat islets were labelled with [3H]leucine at different glucose concentrations in the presence or absence of low concentrations of cycloheximide. Under these conditions, at glucose concentrations up to 5.6 mM, endogenous insulin mRNA did not become rate-limiting for the synthesis of insulin, whereas stimulation of non-insulin protein synthesis was abolished by cycloheximide at all glucose concentrations, indicating either that insulin synthesis is selectively regulated at the level of elongation at glucose concentrations up to 5.6 mM, or that at these concentrations inactive insulin mRNA is transferred to an actively translating pool. Glucose-induced changes in the intracellular distribution of insulin mRNA in cultured islets were assessed by subcellular fractionation and blot-hybridization using insulin cDNA probes. At glucose concentrations above 3.3 mM, cytoplasmic insulin mRNA was increasingly transferred to fractions co-sedimenting with ribosomes, and relatively more of the ribosome-associated insulin mRNA became membrane-associated, consistent with effects of glucose above 3.3 mM on both the initiation of insulin mRNA and SRP (signal recognition particle)-mediated transfer of cytosolic nascent preproinsulin to the endoplasmic reticulum. When freshly isolated islets were homogenized and incubated with 125I-Tyr-tRNA, run-off incorporation of 125I into preproinsulin was increased by prior incubation of the islets at 16.7 mM-glucose. The addition of purified SRP receptor increased the run-off incorporation of [125I]iodotyrosine into preproinsulin, especially when the islets had been preincubated at 16.7 mM-glucose. These findings taken together suggest that glucose may stimulate elongation rates of nascent preproinsulin at concentrations up to 5.6 mM, stimulates initiation of protein synthesis involving both insulin and non-insulin mRNA at concentrations above 3.3 mM, and increases the transfer of initiated insulin mRNA molecules from the cytoplasm to microsomal membranes by an SRP-mediated mechanism that involves the modification of interactions between SRP and its receptor.  相似文献   

18.
Dual action of adiponectin on insulin secretion in insulin-resistant mice   总被引:13,自引:0,他引:13  
Adiponectin is secreted by adipocytes and has been implicated as a mediator of insulin sensitivity. In this study, the acute effects of adiponectin on islets isolated from normal or diet-induced insulin resistant mice were examined. In normal islets, adiponectin (5 microg/ml) had no significant effect on insulin secretion. In contrast, in islets from mice rendered insulin resistant by high-fat feeding, adiponectin inhibited insulin secretion at 2.8 mM (P < 0.01) but augmented insulin secretion at 16.7 mM glucose (P < 0.05). The augmentation of glucose-stimulated insulin secretion by adiponectin was accompanied by increased glucose oxidation (P < 0.005), but without any significant effect on palmitate oxidation or the islet ATP/ADP ratio. Furthermore, RT-PCR revealed the expression of the adiponectin receptor AdipoR1 mRNA in mouse islets, however, with no difference in the degree of expression level between the two feeding groups. The results thus uncover a potential dual role for adiponectin to modify insulin secretion in insulin resistance.  相似文献   

19.
The role of insulin in modulating phosphoinositide breakdown and accumulation of inositol phosphates was investigated in isolated rat pancreatic islets by using GPAIS (guinea-pig anti-insulin antiserum) that neutralizes effects of insulin in the medium. At either 3.0 mM- or 16.7 mM-glucose or 3.0 mM-glucose plus 10 microM-arecaidine propargyl ester (muscarinic receptor agonist), GPAIS (but not control serum) was able to increase InsP2 and InsP3, but not InsP, in myo-[3H] inositol-prelabelled islets. The effect of GPAIS on 3H incorporation into InsP3 was dose-dependent, with a half-maximal effect at a concentration able to bind 4004 +/- 163 microunits of insulin. A specific mass assay of the biologically relevant isomer Ins (1,4,5)P3 revealed a huge increase (greater than 3-folf). Formation of PtdIns, PtdInsP and PtdInsP2 was not affected by GPAIS. This is indirect evidence for an effect of insulin on inositide metabolism, and therefore endogenously released insulin may have led to an underestimation in earlier studies of effects of insulinotropic substances on inositol phosphate accumulation.  相似文献   

20.
d-glyceraldehyde stimulated insulin secretion from isolated rat pancreatic islets in static incubation and perifusion systems. At low concentrations (2–4 mM) d-glyceraldehyde was a more potent secretagogue than glucose. The insulinotropic action of 15 mM d-glyceraldehyde was not affected by d-mannoheptulose, was potentiated by cytochalasin B (5 μg/ml) and theophylline (4 mM), and was inhibited by both adrenalin (2 μM) and somatostatin (10 μg/ml). D-glyceraldehyde at a concentration of 1.5 mM produced a 10-fold increase of l-[4,5-3 H]leucine incorporation into proinsulin and insulin without a significant increase into other islet proteins. Glucose at 1.5 mM did not stimulate proinsulin biosynthesis. d-Glyceraldehyde at concentrations higher than 1.5 mM, in marked contrast to glucose, progressively inhibited incorporation of labelled leucine into proinsulin + insulin and other islet proteins. d-glyceraldehyde also inhibited the oxidation of glucose. l-Glyceraldehyde did not stimulate proinsulin biosynthesis and had less effect than the d-isomer on insulin release and glucose oxidation. The results strongly suggest that metabolites below d-glyceraldehyde-3-P are signals for insulin biosynthesisand release. Interaction of d-glyceraldehyde with a “membrane receptor” cannot, however, be excluded with certainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号