首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
3.
4.
5.
6.
7.
The 5' regulatory region of the chh2 gene, encoding cellobiohydrolase II, of the filamentous fungus Hypocrea jecorina contains the cbh2 activating element (CAE) which is essential for cbh2 expression. The CAE consists of two separate, adjacent motifs, a CCAAT box on the template strand (ATTGG) and a GTAATA box on the coding strand, which co-operate in the induction of the gene by cellulose or sophorose. EMSA supershift experiments using an antibody against Aspergillus nidulans HAPC suggested that the complex which binds to the H. jecorina CCAAT box contains a HAPC homolog. To obtain direct evidence for this, we have cloned the hap2, hap3 and hap5 genes from H. jecorina. They encode proteins whose core regions display great similarity to Aspergillus HAPB, HAPC and HAPE and to known HAP homologs from other organisms. All three genes are transcribed in a carbon source-independent manner. A. nidulans deltahap strains were functionally complemented in vitro by the overexpressed H. jecorina HAP2, HAP3 and HAP5 proteins, and they thus represent subunits of the CCAAT-binding complex. Furthermore, all three proteins (HAP2, HAP3 and HAP5) were needed to bind to the CAE in the H. jecorina cbh2 gene promoter in vitro. We conclude that the CCAAT box on the template strand in CAE is bound by the H. jecorina equivalent of the HAP protein complex.  相似文献   

8.
9.
10.
We have previously shown that the Nonomuraea flexuosa Xyn11A polypeptides devoid of the carbohydrate binding module (CBM) have better thermostability than the full-length xylanase and are effective in bleaching of pulp. To produce an enzyme preparation useful for industrial applications requiring high temperature, the region encoding the CBM was deleted from the N. flexuosa xyn11A gene and the truncated gene was expressed in Trichoderma reesei. The xylanase sequence was fused to the T. reesei mannanase I (Man5A) signal sequence or 3' to a T. reesei carrier polypeptide, either the Man5A core/hinge or the cellulose binding domain (CBD) of cellobiohydrolase II (Cel6A, CBHII). The gene and fusion genes were expressed using the cellobiohydrolase 1 (cel7A, cbh1) promoter. Single-copy isogenic transformants in which the expression cassette replaced the cel7A gene were cultivated and analyzed. The transformants expressing the truncated N. flexuosa xyn11A produced clearly increased amounts of both the xylanase/fusion mRNA and xylanase activity compared to the corresponding strains expressing the full-length N. flexuosa xyn11A. The transformant expressing the cel6A CBD-truncated N. flexuosa xyn11A produced about 1.9 g liter-1 of the xylanase in laboratory-scale fermentations. The xylanase constituted about 25% of the secreted proteins. The production of the truncated xylanase did not induce the unfolded protein response (UPR) pathway. However, the UPR was induced when the full-length N. flexuosa xyn11A with an exact fusion to the cel7A terminator was expressed. We suggest that the T. reesei folding/secretion machinery is not able to cope properly with the bacterial CBM when the mRNA of the full-length N. flexuosa xyn11A is efficiently translated.  相似文献   

11.
12.
13.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

14.
The aim of this study was to identify a novel 1,4-beta-xylanase gene from the mixed genome DNA of human fecal bacteria without bacterial cultivation. Total DNA was isolated from a population of bacteria extracted from fecal microbiota. Using PCR, the gene fragments encoding 5 different family 10 xylanases (xyn10A, xyn10B, xyn10C, xyn10D, and xyn10E) were found. Amino acid sequences deduced from these genes were highly homologous with those of xylanases from anaerobic intestinal bacteria such as Bacteroides spp. and Prevotella spp. Self-organizing map (SOM) analysis revealed that xynA10 was classified into Bacteroidetes. To confirm that one of these genes encodes an active enzyme, a full-length xyn10A gene was obtained using nested primers specific to the internal fragments and random primers. The xyn10A gene encoding the xylanase Xyn10A consists of 1146 bp and encodes a protein of 382 amino acids and a molecular weight of 43,552. Xyn10A was a single module novel xylanase. Xyn10A was purified from a recombinant Escherichia coli strain and characterized. This enzyme was optimally active at 40 degrees C and stable up to 50 degrees C at pH 6.5 and over the pH range 4.0-11.0 at 25 degrees C. In addition, 2 ORFs (ORF1 and ORF2) were identified upstream of xyn10A. These results suggested that many unidentified xylanolytic bacteria exist in the human gut and may contribute to the breakdown of xylan which contains dietary fiber.  相似文献   

15.
16.
17.
Two xylanase-encoding genes, named xyn11A and xyn10B, were isolated from a genomic library of Cellulomonas pachnodae by expression in Escherichia coli. The deduced polypeptide, Xyn11A, consists of 335 amino acids with a calculated molecular mass of 34,383 Da. Different domains could be identified in the Xyn11A protein on the basis of homology searches. Xyn11A contains a catalytic domain belonging to family 11 glycosyl hydrolases and a C-terminal xylan binding domain, which are separated from the catalytic domain by a typical linker sequence. Binding studies with native Xyn11A and a truncated derivative of Xyn11A, lacking the putative binding domain, confirmed the function of the two domains. The second xylanase, designated Xyn10B, consists of 1,183 amino acids with a calculated molecular mass of 124,136 Da. Xyn10B also appears to be a modular protein, but typical linker sequences that separate the different domains were not identified. It comprises a N-terminal signal peptide followed by a stretch of amino acids that shows homology to thermostabilizing domains. Downstream of the latter domain, a catalytic domain specific for family 10 glycosyl hydrolases was identified. A truncated derivative of Xyn10B bound tightly to Avicel, which was in accordance with the identified cellulose binding domain at the C terminus of Xyn10B on the basis of homology. C. pachnodae, a (hemi)cellulolytic bacterium that was isolated from the hindgut of herbivorous Pachnoda marginata larvae, secretes at least two xylanases in the culture fluid. Although both Xyn11A and Xyn10B had the highest homology to xylanases from Cellulomonas fimi, distinct differences in the molecular organizations of the xylanases from the two Cellulomonas species were identified.  相似文献   

18.
The OsmC-region (osmotically induced protein family) of the two-domain esterase EstO from the psychrotolerant bacterium Pseudoalteromonas arctica has been shown to increase thermolability. In an attempt to test if these properties can be conferred to another enzyme, we genetically fused osmC to the 3′-region of the family 8 xylanase encoding gene xyn8 from P. arctica. The chimeric open reading frame xyn8-OsmC was cloned and the chimeric protein was purified after heterologous expression in Escherichia coli. Xyn8 and Xyn8-OsmC showed cold-adapted properties (more than 60% activity at 0°C) using birchwood xylan as the preferred substrate. Maximal catalytic activity is slightly shifted from 15°C (Xyn8) to 20°C for Xyn8-OsmC. Thermostability of Xyn8-OsmC is significantly changed in comparison to wild-type Xyn8. The OsmC-fusion variant showed an apparent decrease in thermostability between 40 and 45°C, while both proteins are highly instable at 50°C.  相似文献   

19.
In this study, the xyn3 gene from the filamentous mesophilic fungus Trichoderma reesei (Hypocrea jecorina) PC-3-7 was cloned and sequenced. Analysis of the deduced amino acid sequence of XYN III revealed considerable homology with xylanases belonging to glycoside hydrolase family 10. These results show that XYN III is distinguishable from XYN I and XYN II, two other T. reesei xylanases that belong to the glycosidase family 11. When xyn3 was expressed in Escherichia coli, significant activity was observed in the cell-free extract, and higher activity (13.2 U/ml medium) was recovered from the inclusion bodies in the cell debris. The sequence of the 5′-upstream region of the gene in the parent strain QM9414 is identical to that of PC-3-7, although the expression level of xyn3 in PC-3-7 has been reported to be at least 1,000 times greater than in QM9414. These results suggest that xyn3 expression in T. reesei QM9414 is silenced. The consensus sequences for ACEI, ACEII, CREI, and the Hap2/3/5 protein complex are all present in the upstream region of xyn3. Deletion analysis of the upstream region revealed that two regions containing consensus sequences for the known regulatory elements play important roles for xyn3 expression.  相似文献   

20.
Three endoxylanase genes were cloned from the thermophilic fungus Chaetomium thermophilum CBS 730.95. All genes contained the typical consensus sequence of family 11 glycoside hydrolases. Genomic copies of Ct xyn11A, Ct xyn11B, and Ct xyn11C were expressed in the filamentous fungus T. reesei under the control of the strong T. reesei cel7A (cellobiohydrolase 1, cbh1) promoter. The molecular masses of the Ct Xyn11A, Ct Xyn11B, and Ct Xyn11C proteins on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were 27, 23, and 22 kDa, respectively. Ct Xyn11A was produced almost as efficiently as the homologous xylanase II from a corresponding single-copy transformant strain. Ct Xyn11B production level was approximately half of that of Ct Xyn11A. The amount of Ct Xyn11C was remarkably lower. Ct Xyn11A had the highest temperature optimum and stability of the recombinant xylanases and the highest activity at acid-neutral pH (pH 5–7). It was the most suitable for industrial bleaching of kraft pulp at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号