首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We studied projections from extrastriate visual areas and the superior colliculus to the pontine nuclei of monkeys using degeneration staining and transport of wheatgerm agglutinin horseradish peroxidase, and 3H amino acids. The superior colliculus and the extrastriate cortical visual areas both project to the ipsilateral dorsolateral region of the pontine nuclei. The projections from extrastriate visual cortex occupy a much larger territory within the pontine nuclei than those from the superior colliculus. The superficial laminae of the superior colliculus project only to the ipsilateral pontine nuclei. The projection to the contralateral nucleus reticularis tegmenti pontis arises from cells in deeper laminae within the superior colliculus.  相似文献   

2.
Basal ganglia influences on the cerebellum of the cat   总被引:1,自引:0,他引:1  
The changes in firing rate of intracerebellar nuclear neurons following electrical stimulation of the contralateral basal ganglia were investigated in adult cats, in which antidromic activation of cortico-pontine and/or cortico-olivar fibers arising in the area 6 had been excluded by chronic ablation of the motor cortex. Activation of putamen and caudate nucleus induced discharge changes in a low percentage (below 12.5%) of both medial and lateral cerebellar nuclei neurons, while stimulation of globus pallidus and especially of entopeduncular nucleus modified the spontaneous discharge of a greater percent of cells (up to 29%), mainly in the most lateral cerebellar portions. The basal ganglia-induced effects were abolished upon section of the brachium pontis but not of the restiform body. Latency values of the responses, which were predominantly excitatory in nature, suggest the involvement of structures interposed between basal ganglia and precerebellar systems. We postulated that impulses issued by the basal ganglia could reach the cerebellum through a pathway that involves the pedunculopontine nucleus and the nucleus reticularis tegmenti pontis.  相似文献   

3.
Smooth-pursuit eye movements are used to stabilize the image of a moving object of interest on the fovea, thus guaranteeing its high-acuity scrutiny. Such movements are based on a phylogenetically recent cerebro-ponto-cerebellar pathway that has evolved in parallel with foveal vision. Recent work has shown that a network of several cerebrocortical areas directs attention to objects of interest moving in three dimensions and reconstructs the trajectory of the target in extrapersonal space, thereby integrating various sources of multimodal sensory and efference copy information, as well as cognitive influences such as prediction. This cortical network is the starting point of a set of parallel cerebrofugal projections that use different parts of the dorsal pontine nuclei and the neighboring rostral nucleus reticularis tegmenti pontis as intermediate stations to feed two areas of the cerebellum, the flocculus-paraflocculus and the posterior vermis, which make mainly complementary contributions to the control of smooth pursuit.  相似文献   

4.
In the present study some qualitative and quantitative features of the reticular formation of the medulla oblongata, pons and midbrain have been elucidated by cytoarchitectonic methods in the dolphin (Tursiops truncatus). The studies have demonstrated that similar to land mammalia, the dolphin has a reticular formation made up of spatially open cell groups lying in the deepest parts of the brain stem. Cytoarchitectonically the component parts of the reticular formation show a number of peculiarities enabling us to distinguish separate nuclei. In the dolphin peculiar architectonics have been observed in the nucleus gigantocellularis medullae oblongatae, nucleus papillioformis or the nucleus reticularis tegmenti Bechterewi and the nucleus centralis superior medialis seu ventralis. Fairly poor in cells are the nucleus centralis caudalis pontis and the nucleus centralis oralis pontis. We failed to single out as autonomous nuclei cell groups corresponding to the nucleus funiculi lateralis and the nucleus paratrochlearis of the land mammalia. The size and density of cells in nuclei have a number of peculiarities. The analysis of the ratios of the brainstem volume to that of reticular structures has shown them to be the smallest in the dolphin as compared with land mammals. The smaller share held by the brain-stem reticular formation and its cytoarchitectonic features can be associated with the functional properties resulting from the greater specialization of some of brain-stem systems (e.g. auditory, vestibular, extrapyramidal etc.) in the dolphin in comparison with land mammals.  相似文献   

5.
Bilateral lesions of the pontine tegmentum involving the superior cerebellar peduncles and the nucleus reticularis pontis oralis have been shown to attenuate the tonic components of maximal seizures induced by electroshock, sound stimulation (audiogenic), or pentylenetetrazol, although having no effect on clonus in three separate seizure models. The pontine tegmental lesion also abolishes the clonus of minimal audiogenic seizures that have a motor pattern different from that of other clonic models, and are believed to originate in the brain stem. The preponderant suppression of tonus by the pontine tegmental lesion as well as the inhibition of clonus in audiogenic seizures is strikingly similar to the effects of phenytoin in these same seizure models. The findings presented are consistent with the hypothesis that the pontine reticular formation (RF) plays a key role in the generation and/or expression of tonic convulsions. Additional findings are presented that suggest that serotonin may attenuate the tonic components of maximal electroshock seizures by an action on the brain stem. Thus, it seems likely that pontine tegmental lesions as well as antiepileptic drugs and neurotransmitters with preferential effects on tonic seizures act on a common neural substrate that appears to include the brain-stem RF.  相似文献   

6.
It is convenient to describe oculomotor neuroanatomy in terms in five to six different eye movement types, each with relatively independent neural circuitry: saccades, vestibulo-ocular reflex, optokinetic response, smooth pursuit, vergence and, most recently added to the list, gaze-holding. Current research indicates that many structures participate in several eye movement types, such as the nucleus reticularis tegmenti pontis, frontal eye fields and pretectum. However, the circuits appear to run in parallel rather than being integrated.  相似文献   

7.
In order to study oral pontine mechanisms of the sleep- wakefulness cycle (SWC), modifications in the total amount, frequency, and duration of episodes of wakefulness (W), drowsiness (D), slow sleep (SS) and paradoxical sleep (PS) together with modifications in the hourly distribution of both sleep states were analyzed in 15 adult cats. Three animals were used as sham-operated controls. Six of them, Group I, received unilateral lesions in ventral and lateral areas of the nucleus reticularis pontis oralis (RPO) and rostral nucleus reticularis pontis caudalis (RPC). The remaining 6 cats, Group II, had unilateral lesions in the central part of the same nuclei. After ventrolateral lesions (Group I) decrease of PS and SS occurred, but only PS changes reached statistically significant values; while, on the contrary, a significant increase of SS and PS followed central lesions (Group II). Hourly distribution analysis indicated that in Group I decrease of both sleep states took place mainly at night, while in Group II increase of both SS and PS occurred during day. These results suggest a complex and non- uniform influence of the pontine tegmental area on SWC mechanisms. Effects obtained after unilateral lesions, precisely located in ventral and lateral or central parts, point to the existence of two functionally distinct, although almost overlapping, systems, at this level.  相似文献   

8.
Extracellular recording techniques were used on cats anesthetized with Nembutal to illustrate antidromic activation of pontine neurons produced by stimulating the medial and occasionally the superior cerebellar peduncle, the cerebellar central nuclei, pyramidal tract, and sensorimotor region of the cortex. Of the pontine nucleus projection, that extending to the lateral cerebellar nucleus was the most clearly defined. Stimulation of the pyramidal tract, central cerebellar nuclei and the superior cerebellar peduncle was found to produce monosynaptic excitation of pontine neurons. The significance and special features of the connections identified are discussed in connection with cortico-pontocerebellar system function.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Amenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 38–48, January–February, 1988.  相似文献   

9.
To determine the distribution of reticulospinal (RS) neurons in the chicken, WGA-HRP was injected into the cervical or lumbosacral enlargement either unilaterally or bilaterally. The brainstem reticular nuclei sent largely descending fibers to both the spinal enlargements. The mesencephalon (medial and lateral mesencephalic reticular formation) and the rostral pons (nucleus reticularis [n.r.] pontis oralis) project mainly to the cervical enlargement. RS neurons were mainly distributed from the pontomedullary junction to the rostral medulla including n. r. pontis caudalis and pars gigantocellularis, n. r. gigantocellularis, n. r. parvocellularis, n. r. paragigantocellularis, and n. r. subtrigeminalis. It is suggested that the majority of these neurons send axons at least as far as the lumbosacral enlargement. In the lower medulla, RS neurons were distributed in the dorsal and ventral parts of the central nucleus of the medulla.  相似文献   

10.
采用免疫组织化学SABC法,研究白介素-1α、干扰素-γ、神经生长因子-β和肿瘤坏死因子-α在成体中华蟾蜍脑中的表达和分布特点。结果发现,白介素-1α阳性细胞数量很多,分布于脑的各个区域。白介素-1α多在细胞的胞体中,而原始海马锥体细胞,中脑的背前侧被盖核和腹后侧被盖核中的细胞可见阳性的突起。干扰素-γ阳性细胞数量较多,分布在端脑的原始海马和隔区,丘脑腹外侧核,下丘脑的视前区、视交叉上核和腹侧漏斗核,中脑被盖的背前侧被盖核、腹前侧被盖核、背后侧被盖核和腹后侧被盖核中,小脑的Purkinje细胞层和延髓的网状核,其中原始海马,背前侧被盖核和背后侧被盖核,视交叉上核,Purkinje细胞层和网状核中的细胞中可见阳性突起。神经生长因子-β阳性细胞数量较少,主要存在于下丘脑的视前区和视交叉上核,中脑被盖的腹前侧被盖核,小脑的Purkinje细胞层和延髓的网状核中,其中视前区、Purkinje细胞层和网状核中细胞可见阳性突起。肿瘤坏死因子-α阳性细胞数量最少,分布范围仅限于中脑被盖背前侧区和延髓的网状核及中缝核,但细胞具有阳性突起。因此,白介素-1α和干扰素-γ在成体动物脑中分布较为广泛,可能是神经细胞生命活动所必需的;而神经生长因子-β和肿瘤坏死因子-α在成体动物脑中分布范围狭窄,其作用可能仅限于脑中的某些特殊区域。  相似文献   

11.
Summary In the present study, we have demonstrated, by means of the biotin-avidin method, the widespread distribution of neuropeptide Y (NPY)-immunoreactive structures throughout the whole brain of the Japanese quail (Coturnix coturnix japonica). The prosencephalic region contained the highest concentration of both NPY-containing fibres and perikarya. Immunoreactive fibres were observed throughout, particularly within the paraolfactory lobe, the lateral septum, the nucleus taeniae, the preoptic area, the periventricular hypothalamic regions, the tuberal complex, and the ventrolateral thalamus. NPY-immunoreactive cells were represented by: a) small scattered perikarya in the telencephalic portion (i.e. archistriatal, neostriatal and hyperstriatal regions, hippocampus, piriform cortex); b) medium-sized cell bodies located around the nucleus rotundus, ventrolateral, and lateral anterior thalamic nuclei; c) small clustered cells within the periventricular and medial preoptic nuclei. The brainstem showed a less diffuse innervation, although a dense network of immunopositive fibres was observed within the optic tectum, the periaqueductal region, and the Edinger-Westphal, linearis caudalis and raphes nuclei. Two populations of large NPY-containing perikarya were detected: one located in the isthmic region, the other at the boundaries of the pons with the medulla. The wide distribution of NPY-immunoreactive structures within regions that have been demonstrated to play a role in the control of vegetative, endocrine and sensory activities suggests that, in birds, this neuropeptide is involved in the regulation of several aspects of cerebral functions.Abbreviations AA archistriatum anterius - AC nucleus accumbens - AM nucleus anterior medialis - APP avian pancreatic polypeptide - CNS centrai nervous system - CO chiasma opticum - CP commissura posterior - CPi cortex piriformis - DIC differential interferential contrast - DLAl nucleus dorsolateralis anterior thalami, pars lateralis - DLAm nucleus dorsolateralis anterior thalami, pars medialis - E ectostriatum - EW nucleus of Edinger-Westphal - FLM fasciculus longitudinalis medialis - GCt substantia grisea centralis - GLv nucleus geniculatus lateralis, pars ventralis - HA hyperstriatum accessorium - Hp hippocampus - HPLC high performance liquid chromatography - HV hyperstriatum ventrale - IF nucleus infundibularis - IO nucleus isthmo-opticus - IP nucleus interpeduncularis - IR immunoreactive - LA nucleus lateralis anterior thalami - LC nucleus linearis caudalis - LFS lamina frontalis superior - LH lamina hyperstriatica - LHRH luteinizing hormone-releasing hormone - LoC locus coeruleus - LPO lobus paraolfactorius - ME eminentia mediana - N neostriatum - NC neostriatum caudale - NPY neuropeptide Y - NIII nervus oculomotorius - NV nervus trigeminus - NVI nervus facialis - NVIIIc nervus octavus, pars cochlearis - nIV nucleus nervi oculomotorii - nIX nucleus nervi glossopharyngei - nBOR nucleus opticus basalis (ectomamilaris) - nCPa nucleus commissurae pallii - nST nucleus striae terminalis - OM tractus occipitomesencephalicus - OS nucleus olivaris superior - PA palaeostriatum augmentatum - PBS phosphate-buffered saline - POA nucleus praeopticus anterior - POM nucleus praeopticus medialis - POP nucleus praeopticus periventricularis - PP pancreatic polypeptide - PYY polypeptide YY - PVN nucleus paraventricularis magnocellularis - PVO organum paraventriculare - R nucleus raphes - ROT nucleus rotundus - RP nucleus reticularis pontis caudalis - Rpc nucleus reticularis parvocellularis - RPgc nucleus reticularis pontis caudalis, pars gigantocellularis - RPO nucleus reticularis pontis oralis - SCd nucleus subcoeruleus dorsalis - SCv nucleus subcoeruleus ventralis - SCNm nucleus suprachiasmaticus, pars medialis - SCNl nucleus suprachiasmaticus, pars lateralis - SL nucleus septalis lateralis - SM nucleus septalis medialis - Ta nucleus tangentialis - TeO tectum opticum - Tn nucleus taeniae - TPc nucleus tegmenti pedunculo-pontinus, pars compacta - TSM tractus septo-mesencephalicus - TV nueleus tegmenti ventralis - VeL nucleus vestibularis lateralis - VLT nucleus ventrolateralis thalami - VMN nucleus ventromedialis hypothalami A preliminary report of this study was presented at the 15th Conference of European Comparative Endocrinologists, Leuven, Belgium, September 1990  相似文献   

12.
Using the indirect immunofluorescent technique, corticotropin releasing factor (CRF)-like immunoreactive nerve fibers and cell bodies were observed to be widely distributed in rat brain. A detailed stereotaxic atlas of CRF-like immunoreactive neurons was prepared. Large numbers of CRF-containing perikarya were observed in the nucleus paraventricularis, with scattered cells in the following nuclei: accumbens, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis hypothalami, amygdaloideus centralis, dorsomedialis, substantia grisea centralis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, vestibularis medialis, tractus solitarius and reticularis lateralis. The most intense staining of CRF-containing fibers was observed in the external lamina of the median eminence. Moderate numbers of CRF-like fibers were observed in the following nuclei: lateralis and medialis septi, tractus diagonalis, interstitialis stria terminalis, preopticus medialis, supraopticus, periventricularis thalami and hypothalami, paraventricularis, anterior ventralis and medialis thalami, rhomboideus, amygdaloideus centralis, habenulae lateralis, dorsomedialis, ventromedialis, substantia grisea centralis, cuneiformis, parabrachialis dorsalis and ventralis, tegmenti dorsalis lateralis, cerebellum, vestibularis medialis, reticularis lateralis, substantia gelatinosa trigemini and lamina I and II of the dorsal horn of the spinal cord. The present findings suggest that a CRF-like peptide may be involved in a neurotransmitter or neuromodulator role, as well as a hypophysiotropic role.  相似文献   

13.
The localization of cholinergic neurons in the cat lower brain stem was determined immunocytochemically with a monoclonal antibody against choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme. ChAT-positive neurons were observed in four major cell groups: cranial nerve motor and special visceromotor neurons: parasympathetic preganglionic visceromotor neurons; neurons located in the ponto-mesencephalic tegmentum including area X (or pedunculopontine tegmental nucleus), nucleus laterodorsalis tegmenti (Ldt) of Castaldi, and peri-locus coeruleus alpha (peri-alpha); and neurons located in nucleus reticularis magnocellularis (Mc) and adjacent nucleus reticularis gigantocellularis (Gc) of the medulla.  相似文献   

14.
Unit responses of the nuclei pontis (NP) and reticular pontine nuclei (RPN) to stimulation of the frontobasal cortex (proreal, orbital, and basal temporal regions) and of the dorsal hippocampus were studied in cats. Stimulation of the various cortical structures was found to induce phasic and (less frequently) tonic responses in neurons of NP and RPN. The main type of unit response in RPN was primary excitation, whereas in NP it was primary inhibition. The largest number of responding neurons in the pontine nuclei was observed to stimulation of the proreal gyrus. In the cerebro-cerebellar relay system neurons of the reticular tegmental nucleus and ventromedial portion of NP showed the highest ability to respond. In the oral and caudal reticular pontine nuclei the regions of predominant influence of cortical structures were located in zones of these nuclei where neurons with rostral and (to a lesser degree) caudal projections were situated.M. Gorkii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 12, No. 4, pp. 358–367, July–August, 1980.  相似文献   

15.
Summary Autoradiograms were prepared from midbrains and hindbrains of male and female Siberian hamsters (Phodopus sungorus), kept under short-day or long-day illumination, after injection of tritium-labeled 1,25-dihydroxycholecalciferol (vitamin D, soltriol). Concentration and retention of radioactivity was noted in nuclei of certain neurons, glial cells, and ependymal cells, and in choroid epithelium. Labeled neurons of varying intensity were found throughout the brainstem in distinct populations at characteristic topographical sites, which include cranial nerve motor nuclei, the nucleus (n.) reticularis tegmenti pontis, the caudoventral region of the n. raphe dorsalis, the n. trapezoides, the n. vestibularis lateralis and n. vestibularis superior, neurons in the various nuclei of the sensory trigeminus, accessory optic nuclei, scattered neurons in nuclei of the reticular formation, the n. ambiguus, certain cells in the area postrema, and many others. Glial cells with nuclear labeling, probably microglia, were scattered predominantly in or near myelinated nerve fascicles. The choroid epithelium showed strong nuclear labeling throughout the ventricle. Nuclear labeling of ependyma was variable and weak, mainly at ventral and lateral extensions (recesses) of the ventricle. The extensive presence of nuclear binding in select neural structures indicates that vitamin D exerts specific genomic effects on cell populations that are known to be involved in the regulation of motor, sensory, autonomic, neuroendocrine, metabolic, and immune functions. The results of these studies, in conjunction with those from other brain and peripheral tissues, recognize vitamin D-soltriol as a steroid hormone with a wide scope of hormone-specific target cells, similar to estrogen, androgen, and adrenal steroids, and which are topographically distinct and characteristic for its functions as the steroid hormone of sunlight.  相似文献   

16.
Autoradiograms were prepared from midbrains and hindbrains of male and female Siberian hamsters (Phodopus sungorus), kept under short-day or long-day illumination, after injection of tritium-labeled 1,25-dihydroxycholecalciferol (vitamin D, soltriol). Concentration and retention of radioactivity was noted in nuclei of certain neurons, glial cells, and ependymal cells, and in choroid epithelium. Labeled neurons of varying intensity were found throughout the brainstem in distinct populations at characteristic topographical sites, which include cranial nerve motor nuclei, the nucleus (n.) reticularis tegmenti pontis, the caudoventral region of the n. raphe dorsalis, the n. trapezoides, the n. vestibularis lateralis and n. vestibularis superior, neurons in the various nuclei of the sensory trigeminus, accessory optic nuclei, scattered neurons in nuclei of the reticular formation, the n. ambiguus, certain cells in the area postrema, and many others. Glial cells with nuclear labeling, probably microglia, were scattered predominantly in or near myelinated nerve fascicles. The choroid epithelium showed strong nuclear labeling throughout the ventricle. Nuclear labeling of ependyma was variable and weak, mainly at ventral and lateral extensions (recesses) of the ventricle. The extensive presence of nuclear binding in select neural structures indicates that vitamin D exerts specific genomic effects on cell populations that are known to be involved in the regulation of motor, sensory, autonomic, neuroendocrine, metabolic, and immune functions. The results of these studies, in conjunction with those from other brain and peripheral tissues, recognize vitamin D-soltriol as a steroid hormone with a wide scope of hormone-specific target cells, similar to estrogen, androgen, and adrenal steroids, and which are topographically distinct and characteristic for its functions as the steroid hormone of sunlight.  相似文献   

17.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

18.
The reticular formation of mammals contains numerous nuclei which can be recognized by their projection patterns, cytoarchitectonics, and neuropeptide/neurotransmitter content. We have identified reticular nuclei in representatives from numerous reptilian groups and ascertained presence or absence of these reticular nuclei in an attempt to use neuronal occurrence as a tool to determine phylogenetic relationships. Recently these studies have been extended to two elasmobranchs, a galeomorph shark and a ray. In this report, we concentrate on three medullary spinal projecting reticular nuclei, reticularis gigantocellularis, reticularis magnocellularis, and reticularis paragigantocellularis. We found that all three nuclei were present in rats, lizards, and elasmobranchs, but one nucleus was absent in crocodilians, and two nuclei were absent in turtles. Thus brain organization may give us clues to phylogenetic relationships. Moreover, these three reticular nuclei exhibited remarkably similar cellular morphology in mammals, reptiles, and elasmobranchs.  相似文献   

19.
After stereotaxis lexions in the nucleus reticularis gigantocellularis of the modulla oblongata and nucleus reticularis pontis caudalis, the distribution of degenerating nerve fibers in the lumbar segments of the spinal cord has been studied by silver impregnation methods of Nauta and Fink-Heimer. Degenerating reticulo-spinal fibers and fragments of axonal terminations were found in the area of n. motorius ventro-medialis and n. motorius ventro-lateralis, as well as partly in n. motorius dorso-lateralis close to motoneurons and their dendrites. Mainly they pass into layers VII and VIII. This fact indicates the existence of direct-reticulo-motoneuronal synaptic connections in rats, which coincides with electrophysiological data.  相似文献   

20.
The effects of electrical stimulation of the substantia nigra (NS) pars compacta on somatosensory response in pontine neurons (from n. reticularis pontis caudalis) and reticular cells (n. reticularis gigantocellularis) were investigated in chloralosed cats. These effects were found to be inhibitory and tended mainly towards high-threshold activation of reticular neurons: responses induced by activation of high-threshold somatic efferents were those mainly inhibited in 71% of test cells. Inhibition of low-threshold response induced by tactile stimuli emerged less clearly or not at all. Potential mechanisms and the functional significance of these SN influences on reticular neurons are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 6, pp. 772–780, November–December.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号