首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The function of a highly mobile loop in Escherichia coli dihydrofolate reductase was studied by constructing a mutant (DL1) using cassette mutagenesis that had four residues deleted in the middle section of the loop (Met16-Ala19) and a glycine inserted to seal the gap. This part of the loop involves residues 16-20 and is disordered in the X-ray crystal structures of the apoprotein and the NADP+ binary complex but forms a hairpin turn that folds over the nicotinamide moiety of NADP+ and the pteridine moiety of folate in the ternary complex [Bystroff, C., & Kraut, J. (1991) Biochemistry 30, 2227-2239]. The steady-state and pre-steady-state kinetics and two-dimensional 1H NMR spectra were analyzed and compared to the wild-type protein. The kinetics on the DL1 mutant enzyme show that the KM value for NADPH (5.3 microM), the KM for dihydrofolate (2 microM), the rate constant for the release of the product tetrahydrofolate (10.3 s-1), and the intrinsic pKa value (6.2) are similar to those exhibited by the wild-type enzyme. However, the hydride-transfer rate declines markedly from the wild-type value of 950 s-1 to 1.7 s-1 for the DL1 mutant and when taken with data for substrate binding indicates that the loop contributes to substrate flux by a factor of 3.5 x 10(4). Thus, the mobility of loop I may provide a mechanism of recruiting hydrophobic residues which can properly align the nicotinamide and pteridine rings for the hydride-transfer process (a form of transition-state stabilization).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
D J Murphy  S J Benkovic 《Biochemistry》1989,28(7):3025-3031
The strictly conserved residue leucine-54 of Escherichia coli dihydrofolate reductase forms part of the hydrophobic wall which binds the p-aminobenzoyl side chain of dihydrofolate. In addition to the previously reported glycine-54 mutant, isoleucine-54 and asparagine-54 substitutions have been constructed and characterized with regard to their effects on binding and catalysis. NADP+ and NADPH binding is virtually unaffected with the exception of a 15-fold decrease in NADPH dissociation from the Gly-54 mutant. The synergistic effect of NADPH on tetrahydrofolate dissociation seen in the wild-type enzyme is lost in the isoleucine-54 mutant: little acceleration is seen in tetrahydrofolate dissociation when cofactor is bound, and there is no discrimination between reduced and oxidized cofactor. The dissociation constants for dihydrofolate and methotrexate increase in the order Leu less than Ile less than Asn less than Gly, varying by a maximum factor of 1700 for dihydrofolate and 6300 for methotrexate. Despite these large changes in binding affinity, the hydride transfer rate of 950 s-1 in the wild-type enzyme is decreased by a constant factor of ca. 30 (2 kcal/mol) regardless of the mutant. Thus, the contributions of residue 54 to binding and catalysis appear to have been separated.  相似文献   

3.
We have applied site-directed mutagenesis methods to change the conserved tryptophan-22 in the substrate binding site of Escherichia coli dihydrofolate reductase to phenylalanine (W22F) and histidine (W22H). The crystal structure of the W22F mutant in a binary complex with the inhibitor methotrexate has been refined at 1.9-A resolution. The W22F difference Fourier map and least-squares refinement show that structural effects of the mutation are confined to the immediate vicinity of position 22 and include an unanticipated 0.4-A movement of the methionine-20 side chain. A conserved bound water-403, suspected to play a role in the protonation of substrate DHF, has not been displaced by the mutation despite the loss of a hydrogen bond with tryptophan-22. Steady-state kinetics, stopped-flow kinetics, and primary isotope effects indicate that both mutations increase the rate of product tetrahydrofolate release, the rate-limiting step in the case of the wild-type enzyme, while slowing the rate of hydride transfer to the point where it now becomes at least partially rate determining. Steady-state kinetics show that below pH 6.8, kcat is elevated by up to 5-fold in the W22F mutant as compared with the wild-type enzyme, although kcat/Km(dihydrofolate) is lower throughout the observed pH range. For the W22H mutant, both kcat and kcat/Km(dihydrofolate) are substantially lower than the corresponding wild-type values. While both mutations weaken dihydrofolate binding, cofactor NADPH binding is not significantly altered. Fitting of the kinetic pH profiles to a general protonation scheme suggests that the proton affinity of dihydrofolate may be enhanced upon binding to the enzyme. We suggest that the function of tryptophan-22 may be to properly position the side chain of methionine-20 with respect to N5 of the substrate dihydrofolate.  相似文献   

4.
We have explored the substrate protonation mechanism of Escherichia coli dihydrofolate reductase by changing the location of the proton donor. A double mutant was constructed in which the proton donor of the wild-type enzyme, aspartic acid-27, has been changed to serine and simultaneously an alternative proton donor, glutamic acid, has replaced threonine at position 113. The active site of the resulting variant enzyme molecule should therefore somewhat resemble that proposed for the R67 plasmid-encoded dihydrofolate reductase [Matthews, D. A., Smith, S. L., Baccanari, D. P., Burchall, J. J., Oatley, S. J., & Kraut, J. (1986) Biochemistry 25, 4194]. At pH 7, the double-mutant enzyme has a 3-fold greater kcat and an unchanged Km(dihydrofolate) as compared with the single-mutant Asp-27----Ser enzyme described previously [Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S. J., & Kraut, J. (1986) Science (Washington, D.C.) 231, 1123]. Additionally, its activity vs pH profiles together with observed deuterium isotope effects, suggest that catalysis depends on an acidic group with a pKa of 8. It is concluded that the dihydropteridine ring of a bound substrate molecule can indeed be protonated by a glutamic acid side chain at position 113 (instead of an aspartic acid side chain at position 27), but with greatly decreased efficiency: at pH 7, the double mutant still has a 25-fold lower kcat (1.2 s-1) and a 2900-fold lower kcat/km(dihydrofolate) (8.6 X 10(3) s-1 M-1) than the wild-type enzyme.  相似文献   

5.
Adapting metabolic enzymes of microorganisms to low temperature environments may require a difficult compromise between velocity and affinity. We have investigated catalytic efficiency in a key metabolic enzyme (dihydrofolate reductase) of Moritella profunda sp. nov., a strictly psychrophilic bacterium with a maximal growth rate at 2 degrees C or less. The enzyme is monomeric (Mr=18,291), 55% identical to its Escherichia coli counterpart, and displays Tm and denaturation enthalpy changes much lower than E. coli and Thermotoga maritima homologues. Its stability curve indicates a maximum stability above the temperature range of the organism, and predicts cold denaturation below 0 degrees C. At mesophilic temperatures the apparent Km value for dihydrofolate is 50- to 80-fold higher than for E. coli, Lactobacillus casei, and T. maritima dihydrofolate reductases, whereas the apparent Km value for NADPH, though higher, remains in the same order of magnitude. At 5 degrees C these values are not significantly modified. The enzyme is also much less sensitive than its E. coli counterpart to the inhibitors methotrexate and trimethoprim. The catalytic efficiency (kcat/Km) with respect to dihydrofolate is thus much lower than in the other three bacteria. The higher affinity for NADPH could have been maintained by selection since NADPH assists the release of the product tetrahydrofolate. Dihydrofolate reductase adaptation to low temperature thus appears to have entailed a pronounced trade-off between affinity and catalytic velocity. The kinetic features of this psychrophilic protein suggest that enzyme adaptation to low temperature may be constrained by natural limits to optimization of catalytic efficiency.  相似文献   

6.
In the x-ray structure of the human dihydrofolate reductase, phenylalanine 31 and phenylalanine 34 have been shown to be involved in hydrophobic interactions with bound substrates and inhibitors. Using oligonucleotide-directed mutagenesis and a bacterial expression system producing the wild-type and mutant human dihydrofolate reductases at levels of 10% of the bacterial protein, we have constructed, expressed, and purified a serine 31 (S31) mutant and a serine 34 (S34) mutant. Fluorescence titration experiments indicated that S31 bound the substrate H2folate 10-fold tighter and the coenzyme NADPH 2-fold tighter than the wild-type human dihydrofolate reductase. The serine 31 mutation had little effect on the steady-state kinetic properties of the enzyme but produced a 100-fold increase in the dissociation constant (Kd) for the inhibitor methotrexate. The serine 34 mutant had much greater alterations in its properties than S31; specifically, S34 had a 3-fold reduction in the Km for NADPH, a 24-fold increase in the Km for H2folate, a 3-fold reduction in the overall reaction rate kcat, and an 80,000-fold increase in the Kd for methotrexate. In addition, the pH dependence of the steady-state kinetic parameters of S34 were different from that of the wild-type enzyme. These results suggest that phenylalanine 31 and phenylalanine 34 make very different contributions to ligand binding and catalysis in the human dihydrofolate reductase.  相似文献   

7.
Sheng Y  Khanam N  Tsaksis Y  Shi XM  Lu QS  Bognar AL 《Biochemistry》2008,47(8):2388-2396
The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E. coli FPGS was found to bind tetrahydrofolate and dihydropteroate with the same affinity as the intact enzyme. The domain-swap chimera proteins between the E. coli and the L. casei enzymes possess both folate or pteroate binding properties and enzymatic activities of their amino terminal portion, suggesting that the N-terminal domain determines the folate substrate specificity. Recent structural studies have identified two unique folate binding sites, the omega loop in L. casei FPGS and the dihydropteroate binding loop in the E. coli enzyme. Mutants with swapped omega loops retained the activities and folate or pteroate binding properties of the rest of the enzyme. Mutating L. casei FPGS to contain an E. coli FPGS dihydropteroate binding loop did not alter its substrate specificity to using dihydropteroate as a substrate. The mutant D154A, a residue specific for the dihydropteroate binding site in E. coli FPGS, and D151A, the corresponding mutant in the L. casei enzyme, were both defective in using tetrahydrofolate as their substrate, suggesting that the binding site corresponding to the E. coli pteroate binding site is also the tetrahydrofolate binding site for both enzymes. Tetrahydrofolate diglutamate was a slightly less effective substrate than the monoglutamate with the wild-type enzyme but was a 40-fold more effective substrate with the D151A mutant. This suggests that the 5,10-methylenetetrahydrofolate binding site identified in the L. casei ternary structure may bind diglutamate and polyglutamate folate derivatives.  相似文献   

8.
The importance of salt bridge interactions at the NADPH binding site of dihydrofolate reductase has been studied by using site-directed mutagenesis. The mutations R44L and H45Q respectively disrupt the ionic contacts made between the 2'-phosphate and pyrophosphoryl moiety of the coenzyme and the N-terminal region of helix C. Equilibrium fluorescence experiments indicate that while the overall binding of NADPH to both free mutants is weakened by 1.1 and 1.5 kcal/mol (H45Q and R44L, respectively), the binding of dihydrofolate and tetrahydrofolate is unaffected. Despite the similar binding energies for both mutants, the transition state for the chemical hydride step is differentially destabilized relative to wild type (0.6 and 1.8 kcal/mol for H45Q and R44L, respectively). Both stopped-flow and pre-steady-state experiments suggest that the root of this effect may lie in multiple conformations for the E-NADPH complex of R44L. The ability of both mutants to transmit their effects beyond the local environment of the NADPH pocket is manifested in several details: (1) the pKa of Asp-27 (25 A away from the sites of mutation) is elevated from 6.5 in the wild type to 7.5 and 8.4 in H45Q and R44L, respectively; (2) NADPH elevates the off rates for tetrahydrofolate from 12 s-1 in the wild type to greater than 45 s-1 in R44L; and (3) bound tetrahydrofolate decreases the affinity of the enzymes for NADPH as reflected in the Km from 2 to 40 microM for H45Q (similar to wild type) but from 8 to 5000 microM for R44L.  相似文献   

9.
Kinetic constants for the interaction of NADH and NADPH with native rat dihydropteridine reductase (DHPR) and an Escherichia coli expressed mutant (D-37-I) have been determined. Comparison of kcat and Km values measured employing quinonoid 6,7-dimethyldihydropteridine (q-PtH2) as substrate indicate that the native enzyme has a considerable preference for NADH with an optimum kcat/Km of 12 microM-1 s-1 compared with a figure of 0.25 microM-1 s-1 for NADPH. Although the mutant enzyme still displays an apparent preference for NADH (kcat/Km = 1.2 microM-1 s-1) compared with NADPH (kcat/Km = 0.6 microM-1 s-1), kinetic analysis indicates that NADH and NADPH have comparable stickiness in the D-37-I mutant. The dihydropteridine site is less affected, since the Km for q-PtH2 and K(is) for aminopterin are unchanged and the 14-26-fold synergy seen for aminopterin binding to E.NAD(P)H versus free E is decreased by less than 2-fold in the D-37-I mutant. No significant changes in log kcat and log kcat/Km versus pH profiles for NADH and NADPH were seen for the D-37-I mutant enzyme. However, the mutant enzyme is less stable to proteolytic degradation, to elevated temperature, and to increasing concentrations of urea and salt than the wild type. NADPH provides maximal protection against inactivation in all cases for both the native and D-37-I mutant enzymes. Examination of the rat DHPR sequence shows a typical dinucleotide binding fold with Asp-37 located precisely in the position predicted for the acidic residue that participates in hydrogen bond formation with the 2'-hydroxyl moiety of all known NAD-dependent dehydrogenases. This assignment is consistent with x-ray crystallographic results that localize the aspartate 37 carboxyl within ideal hydrogen bonding distance of the 2'- and 3'-hydroxyl moieties of adenosine ribose in the binary E.NADH complex.  相似文献   

10.
A kinetic scheme is presented for Lactobacillus casei dihydrofolate reductase that predicts steady-state kinetic parameters. This scheme was derived from measuring association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance spectroscopy. Two major features of this kinetic scheme are the following: (i) product dissociation is the rate-limiting step for steady-state turnover at low pH and follows a specific, preferred pathway in which tetrahydrofolate (H4F) dissociation occurs after NADPH replaces NADP+ in the ternary complex; (ii) the rate constant for hydride transfer from NADPH to dihydrofolate (H2F) is rapid (khyd = 430 s-1), favorable (Keq = 290), and pH dependent (pKa = 6.0), reflecting ionization of a single group. Not only is this scheme identical in form with the Escherichia coli kinetic scheme [Fierke et al. (1987) Biochemistry 26, 4085] but moreover none of the rate constants vary by more than 40-fold despite there being less than 30% amino acid homology between the two enzymes. This similarity is consistent with their overall structural congruence. The role of Trp-21 of L. casei dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Trp-21, a strictly conserved residue near both the folate and coenzyme binding sites, was replaced by leucine. Two major effects of this substitution are on (i) the rate constant for hydride transfer which decreases 100-fold, becoming the rate-limiting step in steady-state turnover, and (ii) the affinities for NADPH and NADP+ which decrease by approximately 3.5 and approximately 0.5 kcal mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
There is marked pH dependence of the rate constant (koff) for tetrahydrofolate (H4folate) dissociation from its ternary complex with human dihydrofolate reductase (hDHFR) and NADPH. Similar pH dependence of H4folate dissociation from the ternary complex of a variant of hDHFR with the substitution Phe31----Leu (F31L hDHFR) causes this dissociation to become rate limiting in the enzyme mechanism at pH approximately 5, and this accounts for the marked decrease in kcat for this variant as the pH is decreased from 7 to 5. This decreased kcat at low pH is not seen for most DHFRs. koff for dissociation of folate, dihydrofolate (H2folate), and H4folate from their binary complexes with hDHFR is similarly pH dependent. For all the complexes examined, the pH dependence of koff in the range pH 5-7 is well described by a pKa of about 6.2 and must be due to ionization of a group on the enzyme. In the higher pH range (7-10), koff increases further as the pH is raised, and this relation is governed by a second pKa which is close to the pKa for ionization of the amide group (HN3-C4O) of the respective ligands. Thus, ionization of the ligand amide group also increases koff. Evidence is presented that the dependence of pH on koff for hDHFR accounts for the shape of the kcat versus pH curve for both hDHFR as well as its F31L variant and contributes to the higher efficiency of hDHFR compared with bacterial DHFR.  相似文献   

12.
A kinetic scheme is presented for Escherichia coli dihydrofolate reductase that predicts steady-state kinetic parameters and full time course kinetics under a variety of substrate concentrations and pHs. This scheme was derived from measuring association and dissociation rate constants and pre-steady-state transients by using stopped-flow fluorescence and absorbance spectroscopy. The binding kinetics suggest that during steady-state turnover product dissociation follows a specific, preferred pathway in which tetrahydrofolate (H4F) dissociation occurs after NADPH replaces NADP+ in the ternary complex. This step, H4F dissociation from the E X NADPH X H4F ternary complex, is proposed to be the rate-limiting step for steady-state turnover at low pH because koff = VM. The rate constant for hydride transfer from NADPH to dihydrofolate (H2F), measured by pre-steady-state transients, has a deuterium isotope effect of 3 and is rapid, khyd = 950 s-1, essentially irreversible, Keq = 1700, and pH dependent, pKa = 6.5, reflecting ionization of a single group in the active site. This scheme accounts for the apparent pKa = 8.4 observed in the steady state as due to a change in the rate-determining step from product release at low pH to hydride transfer above pH 8.4. This kinetic scheme is a necessary background to analyze the effects of single amino acid substitutions on individual rate constants.  相似文献   

13.
The role of the active site residue phenylalanine-31 (Phe31) for recombinant human dihydrofolate reductase (rHDHFR) has been probed by comparing the kinetic behavior of wild-type enzyme (wt) with mutant in which Phe31 is replaced by leucine (F31L rHDHFR). At pH 7.65 the steady-state kcat is almost doubled, but the rate constant for hydride transfer is decreased to less than half that for wt enzyme, as is the rate of the obligatory isomerization of the substrate complex that precedes hydride transfer. Although steady-state measurements indicated that the mutation causes large increases in Km for both substrates, dissociation constants for many complexes are decreased. These apparent paradoxes are due to major mutation-induced decreases in rate constants (koff) for dissociation of folate, dihydrofolate, and tetrahydrofolate from all of their complexes. This results in a mechanism proceeding almost entirely by only one of the two pathways used by wt enzyme. Other consequences of these changes are a much altered dependence of steady-state kcat on pH, inhibition rather than activation by tetrahydrofolate, absence of hysteresis in transient-state kinetics, and a decrease in enzyme efficiency under physiological conditions. The results indicate that there is no quantitative correlation between dihydrofolate binding and the rate of hydride transfer for this enzyme.  相似文献   

14.
The binding site residue Trp-24 is conserved in all vertebrate and bacterial dihydrofolate reductases of known sequence. To determine its effects on enzyme properties, a Trp-24 to Phe-24 mutant (W-24-F) of human dihydrofolate reductase has been constructed by oligodeoxynucleotide site-directed mutagenesis. The W-24-F mutant enzyme appears to have a more open or flexible conformation as compared to the wild-type human dihydrofolate reductase on the basis of results of a number of studies. These studies include competitive ELISA using peptide-specific antibodies against human dihydrofolate reductase, thermal stability, and protease susceptibility studies of both mutant W-24-F and wild-type enzymes. It is concluded that Trp-24 is important for maintaining the structural integrity of the native enzymes. Changes in relative fluorescence quantum yield indicate that Trp-24 is buried and its fluorescence quenched relative to the other two tryptophan residues in the wild-type human reductase. Kinetic studies indicate that kcat values for W-24-F are increased in the pH range of 4.5-8.5 with a 5-fold increase at pH 7.5 as compared to the wild-type enzyme. However, the catalytic efficiency of W-24-F decreases rapidly as the pH is increased from 7.5 to 9.5. The Km values for dihydrofolate are also increased for W-24-F in the pH range of 4.5-9.5 with a 30-fold increase at pH 7.5, while the Km value for NADPH increases only ca. 1.4-fold at pH 7.5 as compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The existence of an oxyanion hole in cysteine proteases able to stabilize a transition-state complex in a manner analogous to that found with serine proteases has been the object of controversy for many years. In papain, the side chain of Gln19 forms one of the hydrogen-bond donors in the putative oxyanion hole, and its contribution to transition-state stabilization has been evaluated by site-directed mutagenesis. Mutation of Gln19 to Ala caused a decrease in kcat/KM for hydrolysis of CBZ-Phe-Arg-MCA, which is 7700 M-1 s-1 in the mutant enzyme as compared to 464,000 M-1 s-1 in wild-type papain. With a Gln19Ser variant, the activity is even lower, with a kcat/KM value of 760 M-1 s-1. The 60- and 600-fold decreases in kcat/KM correspond to changes in free energy of catalysis of 2.4 and 3.8 kcal/mol for Gln19Ala and Gln19Ser, respectively. In both cases, the decrease in activity is in large part attributable to a decrease in kcat, while KM values are only slightly affected. These results indicate that the oxyanion hole is operational in the papain-catalyzed hydrolysis of CBZ-Phe-Arg-MCA and constitute the first direct evidence of a mechanistic requirement for oxyanion stabilization in the transition state of reactions catalyzed by cysteine proteases. The equilibrium constants Ki for inhibition of the papain mutants by the aldehyde Ac-Phe-Gly-CHO have also been determined. Contrary to the results with the substrate, mutation at position 19 of papain has a very small effect on binding of the inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The variable residue Leu-28 of Escherichia coli dihydrofolate reductase (DHFR) and the corresponding residue Phe-31 in murine DHFR were interchanged, and the impact on catalysis was evaluated by steady-state and pre-steady-state analysis. The E. coli L28F mutant increased the pH-independent kcat from 11 to 50 s-1 but had little effect on Km(H2F). An increase in the rate constant for dissociation of H4F from E.H4F.NH (from 12 to 80 s-1) was found to be largely responsible for the increase in kcat. Unexpectedly, the rate constant for hydride transfer increased from 950 to 4000 s-1 with little perturbation of NADPH and NADP+ binding to E. Consequently, the flux efficiency of the E. coli L28F mutant rose from 15% to 48% and suggests a role in genetic selection for this variable side chain. The murine F31L mutant decreased the pH-independent kcat from 28 to 4.8 s-1 but had little effect on Km(H2F). A decrease in the rate constant for dissociation of H4F from E.H4F.NH (from 40 to 22 s-1) and E.H4F (from 15 to 0.4 s-1) was found to be mainly responsible for the decrease in kcat. The rate constant for hydride transfer decreased from 9000 to 5000 s-1 with minor perturbation of NADPH binding. Thus, the free energy differences along the kinetic pathway were generally similar in magnitude but opposite in direction to those incurred by the E. coli L28F mutant. This conclusion implies that DHFR hydrophobic active-site side chains impart their characteristics individually and not collectively.  相似文献   

17.
19F-n.m.r. spectroscopy was used to study the binding of 3',5'-difluoromethotrexate to dihydrofolate reductase (tetrahydrofolate dehydrogenase) from Lactobacillus casei. The benzoyl ring of the bound difluoromethotrexate was found to 'flip' about its symmetry axis, and the rate (7.3 X 10(3) s-1 at 298 K) and activation parameters for this process were determined by lineshape analysis of the 19F-n.m.r. spectrum at a series of temperatures in the range 273-308 K. The contributions to the barrier for this process are discussed. Addition of NADP+ or NADPH to form the enzyme-difluoromethotrexate-coenzyme ternary complex led to an increase in the rate of benzoyl ring flipping by a factor of 2.6-2.8-fold, and to substantial changes in the 19F-n.m.r. chemical shifts. The possible nature of the coenzyme-induced conformational changes responsible for these effects is discussed.  相似文献   

18.
J T Chen  K Taira  C P Tu  S J Benkovic 《Biochemistry》1987,26(13):4093-4100
The role of Phe-31 of Escherichia coli dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Phe-31, a strictly conserved residue located in a hydrophobic pocket and interacting with the pteroyl moiety of dihydrofolate (H2F), was replaced by Tyr and Val. The kinetic behavior of the mutant enzymes in general is similar to that of the wild type. The rate-limiting step for both mutant enzymes is the release of tetrahydrofolate (H4F) from the E X NADPH X H4F ternary complex as determined for the wild type. The 2-fold increase in V for the two mutant enzymes arises from faster dissociation of H4F from the enzyme-product complex. The quantitative effect of these mutations is to decrease the rate of hydride transfer, although not to the extent that this step becomes partially rate limiting, but to accelerate the dissociation rates of tetrahydrofolate from product complexes so that the opposing effects are nearly compensating.  相似文献   

19.
Arginine-70 of human dihydrofolate reductase (hDHFR) is a highly conserved residue which X-ray crystallographic data have shown to interact with the alpha-carboxylate of the terminal L-glutamate moiety of either folic acid or methotrexate (MTX). The rationale for this study was to introduce a conservative amino acid residue change at position 70 (Arg----Lys) which might function as a titratable group and, thus, reveal possible quantitative changes in ligand binding and kinetic parameters as a function of pH. Such a mutant enzyme (R70K) has been constructed and expressed by using site-directed mutagenesis techniques. This substitution has a dramatic effect on the binding of MTX, which displays a 22,600-fold increase in the dissociation constant (KD) at pH 7.5 compared to that of the reported wild-type enzyme value. At this pH, the KD value for dihydrofolate (FAH2) for the R70K enzyme shows only a 7-fold increase over that for the wild-type hDHFR. The pH profiles of the Michaelis and dissociation constants for FAH2 and KD values for MTX for the mutant enzyme all show a 7-8-fold increase from pH 7.5 to 8.5 as compared to its wild-type counterpart. The binding of NADPH or the nonclassical inhibitor trimetrexate (TMQ) to either the wild-type or the mutant enzyme does not show such pH-dependent characteristics. Thus, since FAH2 and MTX interact with the guanidinium side chain of arginine-70 in the wild-type hDHFR, the replacement of this residue with a lysine in the R70K mutant appears to have resulted in the introduction of a titratable group with a perturbed pKa value of ca. 8.3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号