首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The population dynamics of Pectobacterium atrosepticum SCRI1043 (Pba) within tobacco plants was monitored from the time of inoculation until after long-term preservation of microorganisms in the remnants of dead plants. We found and characterised peculiar structures that totally occlude xylem vessels, which we have named bacterial emboli. Viable but non-culturable (VBN) Pba cells were identified in the remnants of dead plants, and the conditions for resuscitation of these VBN cells were established. Our investigation shows that dissociation of the integrated bacterial population during plant colonisation forms distinct subpopulations and cell morphotypes, which are likely to perform specific functions that ensure successful completion of the life cycle within the plant.  相似文献   

2.
A new type of plant-derived signal molecules that activate extracellular pectate lyase activity in phytopathogenic bacterium Pectobacterium atrosepticum SCRI1043 was revealed. These compounds were characterized and partially purified by means of several approaches including RT-PCR analysis, luminescence bioassay and HPLC fractionation. They were smaller than 1 kDa, thermoresistant, nonproteinaceous, hydrophilic, and slightly negatively charged molecules. Using gene expression analysis and bacterial biosensor assay the mode of activity of revealed compounds was studied. The possibility of their action through quorum sensing- and KdgR-mediated pathways was analyzed.  相似文献   

3.
Strains of Bifidobacterium animalis subsp. lactis are extensively exploited by the food industry as health-promoting bacteria, although the genetic variability of members belonging to this taxon has so far not received much scientific attention. In this article, we describe the complete genetic makeup of the B. animalis subsp. lactis Bl12 genome and discuss the genetic relatedness of this strain with other sequenced strains belonging to this taxon. Moreover, a detailed comparative genomic analysis of B. animalis subsp. lactis genomes was performed, which revealed a closely related and isogenic nature of all currently available B. animalis subsp. lactis strains, thus strongly suggesting a closed pan-genome structure of this bacterial group.  相似文献   

4.
Data on the influence of the double bond geometry on the antimicrobial properties of different isomers of etherolenic acid against phytopathogenic bacteria are presented. (ω5Z)-Etherolenic acid possesses bactericidal properties against Xanthomonas campestris ssp. vesicatoria, Pseudomonas syringae ssp. tomato, Pectobacterium atrosepticum SCRI1043; the etherolenic and (11Z)-etherolenic acids possess only bacteriostatic properties.  相似文献   

5.
Summary: Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.  相似文献   

6.
Ldl1 is a virulent phage infecting the dairy starter Lactobacillus delbrueckii subsp. lactis LdlS. Electron microscopy analysis revealed that this phage exhibits a large head and a long tail and bears little resemblance to other characterized phages infecting Lactobacillus delbrueckii. In vitro propagation of this phage revealed a latent period of 30 to 40 min and a burst size of 59.9 ± 1.9 phage particles. Comparative genomic and proteomic analyses showed remarkable similarity between the genome of Ldl1 and that of Lactobacillus plantarum phage ATCC 8014-B2. The genomic and proteomic characteristics of Ldl1 demonstrate that this phage does not belong to any of the four previously recognized L. delbrueckii phage groups, necessitating the creation of a new group, called group e, thus adding to the knowledge on the diversity of phages targeting strains of this industrially important lactic acid bacterial species.  相似文献   

7.
Pectobacterium atrosepticum SCRI1043 is a phytopathogenic Gram‐negative enterobacterium. Genomic analysis has identified that genes required for both respiration and fermentation are expressed under anaerobic conditions. One set of anaerobically expressed genes is predicted to encode an important but poorly understood membrane‐bound enzyme termed formate hydrogenlyase‐2 (FHL‐2), which has fascinating evolutionary links to the mitochondrial NADH dehydrogenase (Complex I). In this work, molecular genetic and biochemical approaches were taken to establish that FHL‐2 is fully functional in P. atrosepticum and is the major source of molecular hydrogen gas generated by this bacterium. The FHL‐2 complex was shown to comprise a rare example of an active [NiFe]‐hydrogenase‐4 (Hyd‐4) isoenzyme, itself linked to an unusual selenium‐free formate dehydrogenase in the final complex. In addition, further genetic dissection of the genes encoding the predicted membrane arm of FHL‐2 established surprisingly that the majority of genes encoding this domain are not required for physiological hydrogen production activity. Overall, this study presents P. atrosepticum as a new model bacterial system for understanding anaerobic formate and hydrogen metabolism in general, and FHL‐2 function and structure in particular.  相似文献   

8.
The pulsed-field gel electrophoresis (PFGE) pattern of SmaI digests of 29 strains of Lactococcus lactis subsp. lactis and subsp. cremoris were determined. Unrelated strains yielded markedly different patterns of digestion products. Bacteriophage-resistant derivatives of four strains, generated by a method analogous to that used regularly in some cheese factories, yielded patterns that were identical or almost identical to that of the parent strain. It is proposed that a 16-h PFGE run with a pulse time increasing linearly from 1 to 20 s, which separates fragments between 50 and 240 kilobase pairs (kbp) and produces a pattern containing around 15 bands, can be used as a reliable procedure for strain identification in the lactococci. SmaI digests of 24 of the strains were analyzed by PFGE at three different pulse times to determine accurately the sizes of fragments bigger than 8 kbp. The sum of the sizes of all of the fragments in the digest of a strain provided an estimate of the genome size of the strain. For all the strains analyzed, this estimate was within the range of 2.0 to 2.7 Mbp, with no apparent difference between L. lactis subsp. lactis, L. lactis subsp. lactis biovar diacetylactis and L. lactis subsp. cremoris strains.  相似文献   

9.
In prokaryotic genomes, the neighboring genes are often located on the complementary DNA strands and adjoin each other by their 5′- or 3′-ends, or even overlap with their open reading frames. It was suggested that this gene topology has a functional purpose of regulating their expression. For the genes that overlap by their coding 3′-end encoding regions, this assumption has not been confirmed experimentally. In a broad group of bacteria that belong to proteobacteria, this convergent gene arrangement is typical for functionally connected quorum sensing-related genes “I” and “R,” which encode synthases of autoinducers, such as N-acyl homoserine lactones and their sensors, respectively. In the present study on the example of overlapping quorum sensing-related genes of plant pathogenic bacterium Pectobacterium atrosepticum SCRI1043, expI, and expR, it was shown that the topology of these genes determines the regulation of their expression.  相似文献   

10.

Background

The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size.

Conclusion/Significance

The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between “environmental” strains, the main contributors to the genetic diversity within the subspecies, and “domesticated” strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the “domesticated” strains essentially arose through substantial genomic flux within the dispensable genome.  相似文献   

11.
Lactococcus lactis subsp. lactis strains show glutamate decarboxylase activity, whereas L. lactis subsp. cremoris strains do not. The gadB gene encoding glutamate decarboxylase was detected in the L. lactis subsp. cremoris genome but was poorly expressed. Sequence analysis showed that the gene is inactivated by the frameshift mutation and encoded in a nonfunctional protein.  相似文献   

12.
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of bacteria in the human colonic niche. Bifidobacterium animalis subsp. lactis, a probiotic bacterium with documented health benefits, is applied largely in fermented dairy products. In this study, the effect of bile salts on proteomes of B. animalis subsp. lactis IPLA 4549 and its bile-resistant derivative B. animalis subsp. lactis 4549dOx was analyzed, leading to the identification of proteins which may represent the targets of bile salt response and adaptation in B. animalis subsp. lactis. The comparison of the wild-type and the bile-resistant strain responses allowed us to hypothesize about the resistance mechanisms acquired by the derivative resistant strain and about the bile salt response in B. animalis subsp. lactis. In addition, significant differences in the levels of metabolic end products of the bifid shunt and in the redox status of the cells were also detected, which correlate with some differences observed between the proteomes. These results indicate that adaptation and response to bile in B. animalis subsp. lactis involve several physiological mechanisms that are jointly dedicated to reduce the deleterious impact of bile on the cell's physiology.  相似文献   

13.
14.
The genetic diversity of lactococci isolated from raw milk in the Camembert cheese Registered Designation of Origin area was studied. Two seasonal samples (winter and summer) of raw milk were obtained from six farms in two areas (Bessin and Bocage Falaisien) of Normandy. All of the strains analyzed had a Lactococcus lactis subsp. lactis phenotype, whereas the randomly amplified polymorphic DNA (RAPD) technique genotypically identified the strains as members of L. lactis subsp. lactis or L. lactis subsp. cremoris. The genotypes were confirmed by performing standard PCR with primers corresponding to a region of the histidine biosynthesis operon. The geographic distribution of each subspecies of L. lactis was determined; 80% of the Bocage Falaisien strains were members of L. lactis subsp. lactis, and 30.5% of the Bessin strains were members of L. lactis subsp. lactis. A dendrogram was produced from a computer analysis of the RAPD profiles in order to evaluate the diversity of the lactococci below the subspecies level. The coefficient of similarity for 117 of the 139 strains identified as members of L. lactis subsp. cremoris was as high as 66%. The L. lactis subsp. lactis strains were more heterogeneous and formed 10 separate clusters (the level of similarity among the clusters was 18%). Reference strains of L. lactis subsp. lactis fell into 2 of these 10 clusters, demonstrating that lactococcal isolates are clearly different. As determined by the RAPD profiles, some L. lactis subsp. lactis strains were specific to the farms from which they originated and were recovered throughout the year (in both summer and winter). Therefore, the typicality of L. lactis subsp. lactis strains was linked to the farm of origin rather than the area. These findings emphasize the significance of designation of origin and the specificity of “Camembert de Normandie” cheese.  相似文献   

15.
The aim of this work was to purify and characterize the bacteriocin produced by Lactococcus lactis subsp. lactis KT2W2L previously isolated from mangrove forests in southern Thailand, in order to evaluate its potential as new food protective agent. The active peptide from the cell-free supernatant of this strain was purified in 4 steps: (1) precipitation with 70 % saturated ammonium sulfate, (2) elution on a reversed-phase cartridge using different concentrations of acetonitrile, (3) cation-exchange chromatography and (4) final purification by reversed-phase HPLC on a C8 column. The molecular mass of 3,329.5254 Da of the purified bacteriocin, determined by mass spectrometry, is nearly identical to that of peptide nisin Z. The activity of the purified bacteriocin was unaffected by pH (2.0–10.0), thermostable but was sensitive to proteolytic enzymes. The bacteriocin activity was stable after 8 weeks of storage at ?20 °C and 7 weeks of storage at 4 °C, but decreased after 3 weeks of storage at 37 °C. It was stable when incubated for 1 month at 4 °C in 0–30 % NaCl. Inhibitory spectrum of this bacteriocin showed a wide range of activity against similar bacterial strains, food-spoilage and food-borne pathogens. L. lactis subsp. lactis KT2W2L was sensitive to kanamycin, penicillin and tetracycline but resistant to ampicillin, gentamicin and vancomycin. The fragment obtained after amplification of genomic DNA from L. lactis subsp. lactis KT2W2L, with specific primers for bacteriocin genes, presented 99 % homology to the nisin Z gene. PCR amplification demonstrated that L. lactis subsp. lactis KT2W2L does not harbor virulence genes cylA, cylB, efaAfs and esp. The bacteriocin and its producing strain may find application as bio-preservatives for reduction in food-spoilage and food-borne pathogens in food products.  相似文献   

16.
Many strains of Bifidobacterium animalis subsp. lactis are considered health-promoting probiotic microorganisms and are commonly formulated into fermented dairy foods. Analyses of previously sequenced genomes of B. animalis subsp. lactis have revealed little genetic diversity, suggesting that it is a monomorphic subspecies. However, during a multilocus sequence typing survey of Bifidobacterium, it was revealed that B. animalis subsp. lactis ATCC 27673 gave a profile distinct from that of the other strains of the subspecies. As part of an ongoing study designed to understand the genetic diversity of this subspecies, the genome of this strain was sequenced and compared to other sequenced genomes of B. animalis subsp. lactis and B. animalis subsp. animalis. The complete genome of ATCC 27673 was 1,963,012 bp, contained 1,616 genes and 4 rRNA operons, and had a G+C content of 61.55%. Comparative analyses revealed that the genome of ATCC 27673 contained six distinct genomic islands encoding 83 open reading frames not found in other strains of the same subspecies. In four islands, either phage or mobile genetic elements were identified. In island 6, a novel clustered regularly interspaced short palindromic repeat (CRISPR) locus which contained 81 unique spacers was identified. This type I-E CRISPR-cas system differs from the type I-C systems previously identified in this subspecies, representing the first identification of a different system in B. animalis subsp. lactis. This study revealed that ATCC 27673 is a strain of B. animalis subsp. lactis with novel genetic content and suggests that the lack of genetic variability observed is likely due to the repeated sequencing of a limited number of widely distributed commercial strains.  相似文献   

17.
Genomic organization of lactic acid bacteria   总被引:5,自引:0,他引:5  
Current knowledge of the genomes of the lactic acid bacteria, Lactococcus lactis and Streptococcus thermophilus, and members of the genera Lactobacillus, Leuconostoc, Pediococcus and Carnobacterium is reviewed. The genomes contain a chromosome within the size range of 1.8 to 3.4 Mbp. Plasmids are common in Lactococcus lactis (most strains carry 4–7 different plasmids), some of the lactobacilli and pediococci, but they are not frequently present in S. thermophilus, Lactobacillus delbrueckii subsp. bulgaricus or the intestinal lactobacilli. Five IS elements have been found in L. lactis and most strains carry multiple copies of at least two of them; some strains also carry a 68-kbp conjugative transposon. IS elements have been found in the genera Lactobacillus and Leuconostoc, but not in S. thermophilus. Prophages are also a normal component of the L. lactis genome and lysogeny is common in the lactobacilli, however it appears to be rare in S. thermophilus. Physical and genetic maps for two L. lactis subsp. lactis strains, two L. lactis subsp. cremoris strains and S. thermophilus A054 have been constructed and each reveals the presence of six rrn operons clustered in less than 40% of the chromosome. The L. lactis subsp. cremoris MG1363 map contains 115 genetic loci and the S. thermophilus map has 35. The maps indicate significant plasticity in the L. lactis subsp. cremoris chromosome in the form of a number of inversions and translocations. The cause(s) of these rearrangements is (are) not known. A number of potentially powerful genetic tools designed to analyse the L. lactis genome have been constructed in recent years. These tools enable gene inactivation, gene replacement and gene recovery experiments to be readily carried out with this organism, and potentially with other lactic acid bacteria and Gram-positive bacteria. Integration vectors based on temperate phage attB sites and the random insertion of IS elements have also been developed for L. lactis and the intestinal lactobacilli. In addition, a L. lactis sex factor that mobilizes the chromosome in a manner reminiscent to that seen with Escherichia coli Hfr strains has been discovered and characterized. With the availability of this new technology, research into the genome of the lactic acid bacteria is poised to undertake a period of extremely rapid information accrual.  相似文献   

18.
Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412T, which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.  相似文献   

19.
Xylose metabolism, a variable phenotype in strains of Lactococcus lactis, was studied and evidence was obtained for the accumulation of mutations that inactivate the xyl operon. The xylose metabolism operon (xylRAB) was sequenced from three strains of lactococci. Fragments of 4.2, 4.2, and 5.4 kb that included the xyl locus were sequenced from L. lactis subsp. lactis B-4449 (formerly Lactobacillus xylosus), L. lactis subsp. lactis IO-1, and L. lactis subsp. lactis 210, respectively. The two environmental isolates, L. lactis B-4449 and L. lactis IO-1, produce active xylose isomerases and xylulokinases and can metabolize xylose. L. lactis 210, a dairy starter culture strain, has neither xylose isomerase nor xylulokinase activity and is Xyl. Xylose isomerase and xylulokinase activities are induced by xylose and repressed by glucose in the two Xyl+ strains. Sequence comparisons revealed a number of point mutations in the xylA, xylB, and xylR genes in L. lactis 210, IO-1, and B-4449. None of these mutations, with the exception of a premature stop codon in xylB, are obviously lethal, since they lie outside of regions recognized as critical for activity. Nevertheless, either cumulatively or because of indirect affects on the structures of catalytic sites, these mutations render some strains of L. lactis unable to metabolize xylose.  相似文献   

20.
Plant cell wall degrading enzymes (PCWDE) are the major virulence determinants in phytopathogenic Pectobacterium, and their production is controlled by many regulatory factors. In this study, we focus on the role of the AepA protein, which was previously described to be a global regulator of PCWDE production in Pectobacterium carotovorum (Murata et al. in Mol Plant Microbe Interact 4:239–246, 1991). Our results show that neither inactivation nor overexpression of aepA affects PCWDE production in either Pectobacterium atrosepticum SCRI1043 or Pectobacterium carotovorum subsp. carotovorum SCC3193. The previously published observation based on the overexpression of aepA could be explained by the presence of the adjacent regulatory rsmB gene in the constructs used. Our database searches indicated that AepA belongs to the YtcJ subfamily of amidohydrolases. YtcJ-like amidohydrolases are present in bacteria, archaea, plants and some fungi. Although AepA has 28% identity with the formamide deformylase NfdA in Arthrobacter pascens F164, AepA was unable to catalyze the degradation of NdfA-specific N-substituted formamides. We conclude that AepA is a putative aminohydrolase not involved in regulation of PCWDE production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号