首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4′,6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.Lake Kivu is a meromictic lake located in the volcanic region between Rwanda and the Democratic Republic of the Congo and is the smallest of the African Great Rift Lakes. The monimolimnion of the lake contains a large amount of dissolved CO2 and methane (300 km3 and 60 km3, respectively) as a result of geological and biological activity (24, 73, 85). This massive accumulation converts Lake Kivu into one of the largest methane reservoirs in the world and into a unique ecosystem for geomicrobiologists interested in the methane cycle and in risk assessment and management (34, 71, 72, 85). Comprehensive studies on the diversity and activity of planktonic populations of both large and small eukaryotes and their trophic interplay operating in the epilimnetic waters of the lake are available (33, 39, 49). Recent surveys have also provided a deeper insight into the seasonal variations of photosynthetic and heterotrophic picoplankton (67, 68), although very few data exist on the composition, diversity, and spatial distribution of bacterial and archaeal communities. In this regard, the studies conducted so far of the bacterial/archaeal ecology in Lake Kivu have been mostly focused on the implications on the methane cycle (34, 73), but none have addressed the presence and distribution of additional archaeal populations in the lake.During the last few years, microbial ecology studies carried out in a wide variety of habitats have provided compelling evidence of the ubiquity and abundance of mesophilic archaea (4, 10, 13, 19). Moreover, the discovery of genes encoding enzymes related to nitrification and denitrification in archaeal metagenomes from soil and marine waters (29, 86, 88) and the isolation of the first autotrophic archaeal nitrifier (40) demonstrated that some archaeal groups actively participate in the carbon and nitrogen cycles (56, 64, 69). In relation to aquatic environments, genetic markers of ammonia-oxidizing archaea (AOA) of the marine Crenarchaeota group 1.1a (MCG1) have consistently been found in water masses of several oceanic regions (6, 14, 17, 26, 28, 30, 37, 42, 51, 52, 89), estuaries (5, 9, 26, 53), coastal aquifers (26, 66), and stratified marine basins (15, 41, 44). Although less information is available for freshwater habitats, recent studies carried out in oligotrophic high-mountain and arctic lakes showed an important contribution of AOA in both the planktonic and the neustonic microbial assemblages (4, 61, 89).The oligotrophic nature of Lake Kivu and the presence of a well-defined redoxcline may provide an optimal niche for the development of autotrophic AOA populations. Unfortunately, no studies of the involvement of microbial planktonic populations in cycling nitrogen in the lake exist, and only data on the distribution of dissolved inorganic nitrogen species in relation to phytoplankton ecology (67, 68) and nutrient loading are available (54, 58). Our goals here were to ascertain whether or not archaeal populations other than methane-related lineages were relevant components of the planktonic microbial community and to determine whether the redox gradient imposed by the oxic-anoxic interphase acts as a threshold for their vertical distribution in epipelagic waters (0- to 100-m depth). To further explore the presence and potential activity of nitrifying archaeal populations in Lake Kivu, samples were analyzed for the abundance and vertical distribution of signature genes for these microorganisms, i.e., the 16S rRNA of MCG1 and the ammonia monooxygenase subunit A (amoA) gene by quantitative PCR.  相似文献   

3.
The incorporation of plant residues into soil not only represents an opportunity to limit soil organic matter depletion resulting from cultivation but also provides a valuable source of nutrients such as nitrogen. However, the consequences of plant residue addition on soil microbial communities involved in biochemical cycles other than the carbon cycle are poorly understood. In this study, we investigated the responses of one N-cycling microbial community, the nitrate reducers, to wheat, rape, and alfalfa residues for 11 months after incorporation into soil in a field experiment. A 20- to 27-fold increase in potential nitrate reduction activity was observed for residue-amended plots compared to the nonamended plots during the first week. This stimulating effect of residues on the activity of the nitrate-reducing community rapidly decreased but remained significant over 11 months. During this period, our results suggest that the potential nitrate reduction activity was regulated by both carbon availability and temperature. The presence of residues also had a significant effect on the abundance of nitrate reducers estimated by quantitative PCR of the narG and napA genes, encoding the membrane-bound and periplasmic nitrate reductases, respectively. In contrast, the incorporation of the plant residues into soil had little impact on the structure of the narG and napA nitrate-reducing community determined by PCR-restriction fragment length polymorphism (RFLP) fingerprinting. Overall, our results revealed that the addition of plant residues can lead to important long-term changes in the activity and size of a microbial community involved in N cycling but with limited effects of the type of plant residue itself.Modern agricultural practices include a return of plant residues to soil, as this is considered sustainable to the environment. It is now recognized that the conversion of native land into cultivated systems leads to carbon losses, which can be up to 20 to 40% (17). Postharvest plant residues therefore represent an important source of carbon, helping to replenish soil organic matter that decomposes as a result of cultivation. Decomposing plant residues are also a source of nutrients, such as nitrogen, with reduced nitrate leaching compared to mineral fertilizers, which is beneficial for water quality (3). In addition, leaving the plant residue on the soil surface limits water losses by evaporation and prevents soil erosion by wind or water (15).The biochemical composition of plant residues is one of the most important factors influencing their decomposition in soil (14, 28, 29, 51). Indeed, Manzoni et al. (28), using a data set of 2,800 observations, showed previously that the patterns of decomposition were regulated by the initial residue stoichiometry. Several other factors such as climatic conditions, soil type, or localization of the residue in the soil (incorporated or on the soil surface) were also reported previously to influence decomposition (2, 24, 29, 44). Microorganisms are the major decomposers of organic matter in soil, and therefore, the diversity and activity of the microbial community during plant residue decomposition has received much attention (6, 23, 26, 27, 35). It was shown previously that the biochemical composition of plant residues influences microbial respiration (8) and microbial community structure (7, 37). The recent development of carbon-labeling approaches has furthered our knowledge of the microorganisms that actively assimilate the carbon derived from various plant residues (10, 31). However, most of those studies focused on microorganisms involved in C mineralization, and in contrast, very little is known about the effect of plant residue decomposition on the microbial communities involved in biochemical cycles other than the carbon cycle. Thus, despite the influence of plant residues on nitrogen cycling (1, 4, 5, 16, 20), studies assessing the effect of the presence and composition of plant residues on the ecology of microbial communities involved in nitrogen cycling are rare (21, 32, 36).The dissimilatory reduction of nitrate into nitrite is the first step in the processes of denitrification and the dissimilatory reduction of nitrate to ammonium (33, 41). The reduction of nitrate by denitrification leads to losses of nitrogen, which is often a limiting nutrient for plant growth in agriculture. Two types of dissimilatory nitrate reductases, differing in location, have been characterized: a membrane-bound nitrate reductase (Nar) and a periplasmic nitrate reductase (Nap) (9, 53). Nitrate reducers can harbor either Nar, Nap, or both (40, 47). Nitrate reducers are probably the most taxonomically diverse functional community within the nitrogen cycle, with members in most bacterial phyla and also archaea (42). Because of this high level of diversity of heterotrophs sharing the ability to produce energy from nitrate reduction, nitrate reducers are an excellent model system to investigate the response of the N-cycling community to plant residue addition.The aim of this work was to determine how the incorporation of plant residues with contrasting biochemical compositions into soil affects the nitrate-reducing community. For this purpose, we monitored the dynamics of the potential activity, size, and structure of the nitrate-reducing community after the addition of wheat, rape, or alfalfa residues to soil in a field experiment. As the nature and availability of the substrate change during residue decomposition (38, 39, 48), the influence of the incorporation of different plant residues on the nitrate-reducing community was investigated at several sampling times for 11 months.  相似文献   

4.
5.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

6.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

7.
8.
9.
10.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

11.
Environmental mycobacteria are of increasing concern in terms of the diseases they cause in both humans and animals. Although they are considered to be ubiquitous in aquatic environments, few studies have examined their ecology, and no ecological studies of coastal marine systems have been conducted. This study uses indirect gradient analysis to illustrate the strong relationships that exists between coastal water quality and the abundance of Mycobacterium spp. within a U.S. mid-Atlantic embayment. Mycobacterium species abundance and water quality conditions (based on 16 physical and chemical variables) were examined simultaneously in monthly samples obtained at 18 Maryland and Virginia coastal bay stations from August 2005 to November 2006 (n = 212). A quantitative molecular assay for Mycobacterium spp. was evaluated and applied, allowing for rapid, direct enumeration. By using indirect gradient analysis (environmental principal-components analysis), a strong linkage between eutrophic conditions, characterized by low dissolved-oxygen levels and elevated nutrient concentrations, and mycobacteria was determined. More specifically, a strong nutrient response was noted, with all nitrogen components and turbidity measurements correlating positively with abundance (r values of >0.30; P values of <0.001), while dissolved oxygen showed a strong negative relationship (r = −0.38; P = 0.01). Logistic regression models developed using salinity, dissolved oxygen, and total nitrogen showed a high degree of concordance (83%). These results suggest that coastal restoration and management strategies designed to reduce eutrophication may also reduce total mycobacteria in coastal waters.Environmental mycobacteria, or nontuberculous mycobacteria (NTM), include all species of mycobacteria other than those in the Mycobacterium tuberculosis complex and M. leprae. In general, NTM are aerobic, acid-fast, gram-positive, non-spore-forming, nonmotile organisms found as free-living saprophytes in soil and water (12, 14, 20, 21, 35). However, several members of this group can cause serious disease in humans, including pulmonary infections, cervical lymphadenitis, ulcerative necrosis, skin infections, and disseminated infections associated primarily with autoimmune disorders (12, 29). For example, disseminated infection with the Mycobacterium avium complex can occur in up to 40% of late-stage AIDS patients in developed countries (43). NTM can also have costly and problematic effects on wild and domesticated animals (17, 23). Thus, understanding the sources and reservoirs of these bacteria has become a priority in recent years (12, 34).While the mode of infection has been poorly established for many cases involving NTM, water is commonly implicated as either a source or a vector (12, 43). NTM are considered to be ubiquitous in the environment and have been cultured globally from samples obtained from freshwaters and marine natural waters (12), swimming pools and hot tubs (11, 25), and drinking water supplies (12, 13), among others. However, only a limited number of attempts have been made to examine the association of their distribution and abundance with environmental parameters (1, 21, 24). The abundance of the M. avium complex was found to correlate positively with water temperature and levels of zinc and humic and fulvic acids and negatively with the dissolved-oxygen content and pH in brown-water swamps in the southeastern United States (24). In a study of Finnish brook waters, acidic conditions, along with the presence of peatlands, chemical oxygen demand, increased precipitation, water color, and concentrations of several metals, were found to favor total NTM (20, 21). However, recent efforts with samples from the Rio Grande River in the United States found positive correlations with the presence of coliforms and Escherichia coli counts and negative correlations with chemical toxicity and water temperature in this alkaline, oligotrophic system (1). Although system-specific differences may be apparent, no attempts to examine mycobacterial ecology in marine and estuarine systems have been reported to date.Historically, researchers have relied on culture-based techniques for detection and enumeration of mycobacteria from environmental samples (1, 20, 21, 43). Because of the slow growth of many mycobacteria, culture from environmental samples requires decontamination, which can severely impact both the quantity and diversity of species recovered (18, 19). Recently, quantitative PCR (qPCR) has gained favor as a means of rapidly enumerating organisms or genes in environmental samples (5, 15, 38, 40). This method allows for the continuous monitoring of the reaction through the use of fluorescent reporter molecules or DNA stains. Because of this strategy, the reaction can be evaluated at the peak of the exponential phase, reducing errors of reagent depletion and assay efficiency associated with end point reads. Quantification is based on the principle that the amount of the starting template is directly proportional to the number of cycles required to reach the peak of the exponential phase, and is evaluated through the preparation of standards.Like many coastal lagoon estuaries, the shallow embayments bordering the Maryland and Virginia seaboard are highly susceptible to anthropogenic influence, as they are visited by millions of people annually for vacation and water-related recreation (44). While eutrophication and degraded environmental conditions have been generally linked to factors or organisms which can ultimately influence human health, little attention has been given to the response of bacteria (16, 45). In this paper, we describe our efforts to examine environmental influences on the abundance and distribution of NTM in a dynamic estuarine system.  相似文献   

12.
13.
14.
15.
In addition to the benthic and pelagic habitats, the epiphytic compartment of submerged macrophytes in shallow freshwater lakes offers a niche to bacterial ammonia-oxidizing communities. However, the diversity, numbers, and activity of epiphytic ammonia-oxidizing bacteria have long been overlooked. In the present study, we analyzed quantitatively the epiphytic communities of three shallow lakes by a potential nitrification assay and by quantitative PCR of 16S rRNA genes. On the basis of the m2 of the lake surface, the gene copy numbers of epiphytic ammonia oxidizers were not significantly different from those in the benthic and pelagic compartments. The potential ammonia-oxidizing activities measured in the epiphytic compartment were also not significantly different from the activities determined in the benthic compartment. No potential ammonia-oxidizing activities were observed in the pelagic compartment. No activity was detected in the epiphyton of Chara aspera, the dominant submerged macrophyte in Lake Nuldernauw in The Netherlands. The presence of ammonia-oxidizing bacterial cells in the epiphyton of Potamogeton pectinatus was also demonstrated by fluorescent in situ hybridization microscopy images. By comparing the community composition as assessed by the 16S rRNA gene PCR-denaturing gradient gel electrophoresis approach, it was concluded that the epiphytic ammonia-oxidizing communities consisted of cells that were also present in the benthic and pelagic compartments. Of the environmental parameters examined, only the water retention time, the Kjeldahl nitrogen content, and the total phosphorus content correlated with potential ammonia-oxidizing activities. None of these parameters correlated with the numbers of gene copies related to ammonia-oxidizing betaproteobacteria.In ammonium-rich environments such as eutrophic lakes, ammonia-oxidizing Betaproteobacteria (β-AOB) perform the first, often rate-limiting step in the process of nitrification, hence playing an important role in the nitrogen turnover in a wide range of natural and artificial habitats (31). Their monophyletic nature allowed the successful application of molecular techniques based on the genes coding for the 16S rRNA gene and the A subunit of the ammonia monooxygenase enzyme (amoA). β-AOB have been considered an ideal model group in molecular microbial ecology (31). The last few decades have seen significantly increased numbers of studies focusing on diversity (7, 22, 24, 44, 48, 54) and niche differentiation and related driving factors (8, 13, 14, 30, 33, 45), as well as on the abilities of ammonia-oxidizing bacteria to cope with contaminants (40, 49, 53), environmental stresses (18, 34, 39), and global change (23, 43). The discovery of the process of anaerobic ammonia oxidization (42), together with the isolation of members of the kingdom Crenarchaeota able to oxidize ammonia (26), is currently changing and deepening the knowledge and understanding of the microorganisms involved in the nitrogen cycle.Nitrification in freshwater as well as in shallow marine lagoon systems has been assumed to be associated with the sediment rather than with the overlying water (2). However, when planktonic nitrification rates are integrated over the whole water column, Vincent and Downes (59) demonstrated the impact of the pelagic community on the total nitrification process in lakes. In shallow freshwater lakes populated by large stands of macrophytes, the role of epiphytic nitrification must also be taken into account, since submerged macrophytes can provide a large accessible surface area for attached microorganisms (61). The bacterial ammonia oxidizers inhabiting the epiphytic compartment have been the subject of a limited number of studies. Eriksson and colleagues (15-17) measured the nitrification rates on the leaves and litter of submerged macrophytes, and Körner (29) reported that considerable numbers of ammonia-oxidizing bacteria colonize the leaves of different species of submerged macrophytes by means of most-probable-numbers counts. In a recent study of the β-AOB in shallow freshwater lakes (12), we described in a qualitative way that the epiphytic communities are composed of members of the Nitrosomonas oligotropha lineage and cluster 3 of the Nitrosospira lineage (48).The present study focused on a more quantitative estimation of the ammonia-oxidizing bacteria in the epiphyton of two different submerged macrophytes, i.e., Potamogeton pectinatus and Chara aspera, present in three shallow freshwater lakes, which form part of the series of lakes studied before (12). We hypothesized that the numbers of cells would differ between the epiphytic, benthic, and pelagic compartments, as previously observed for the community composition, due to the prevailing environmental conditions (12).  相似文献   

16.
17.
Rice (Oryza sativa L.) is, on a global scale, one of the most important food crops. Although endophytic fungi and bacteria associated with rice have been investigated, little is known about the endophytic fungi of wild rice (Oryza granulate) in China. Here we studied the root endophytic mycobiota residing in roots of O. granulate by the use of an integrated approach consisting of microscopy, cultivation, ecological indices, and direct PCR. Microscopy confirmed the ubiquitousness of dark septate endophytes (DSEs) and sclerotium-like structures in root tissues. Isolations from 204 root segments from 15 wild rice plants yielded 58 isolates, for which 31 internal transcribed spacer (ITS)-based genotypes were recorded. The best BLAST match indicated that 34.5% of all taxa encountered may represent hitherto undescribed species. Most of the fungi were isolated with a very low frequency. Calculation of ecological indices and estimation of taxon accumulation curves indicated a high diversity of fungal species. A culture-independent approach was also performed to analyze the endophytic fungal community. Three individual clone libraries were constructed. Using a threshold of 90% similarity, 35 potentially different sequences (phylotypes) were found among 186 positive clones. Phylogenetic analysis showed that frequently detected clones were classified as Basidiomycota, and 60.2% of total analyzed clones were affiliated with unknown taxa. Exophiala, Cladophialophora, Harpophora, Periconia macrospinosa, and the Ceratobasidium/Rhizoctonia complex may act as potential DSE groups. A comparison of the fungal communities characterized by the two approaches demonstrated distinctive fungal groups, and only a few taxa overlapped. Our findings indicate a complex and rich endophytic fungal consortium in wild rice roots, thus offering a potential bioresource for establishing a novel model of plant-fungal mutualistic interactions.The majority of terrestrial plant roots are intimately associated with mycorrhizal fungi, and many aspects of the ecological roles played by these mycorrhizal fungi are well understood. In recent years, however, endophytic fungi have been gaining increasing interest. There is accumulating evidence that plant roots usually harbor mycorrhizal as well as endophytic fungi (29, 30, 34, 39, 52, 63). Dark septate endophytes (DSEs), which are characterized by dark pigmented hyphae and sclerotium-like structures, are believed to represent primary nonmycorrhizal root-inhabiting fungi (23). In some cases, DSEs are even more frequent than mycorrhizal fungi (68).Endophytic fungi have frequently been reported to be associated with crop plants, including wheat (Triticum aestivum), wild barley (Hordeum brevisubulatum and Hordeum bogdanii), soya bean (Glycine max), and maize (Zea mays) (6, 9, 11, 13, 21, 26, 27, 33, 36, 67). Some of the endophytic fungi in these crops conferred resistance of the plant to insect or fungal pathogens (55).Domesticated from the wild grass Oryza rufipogon 10,000 to 14,000 years ago, rice is today the main staple for more than 3 billion people (i.e., half of the world''s population). Its consumption exceeds 100 kg per capita annually in many Asian countries, and it is the principal food for most of the world''s poorest people, particularly in Asia. The association of arbuscular mycorrhizal fungi and endophytic bacteria with rice plants has been well documented (15, 32, 35, 44, 53, 56, 60). Less, however, is known about its fungal endophytes. Fungal endophytes have been detected in cultivated rice (Oryza sativa L.) (12, 14, 37, 61, 70), and antagonistic or plant growth-stimulating properties have been claimed for some of these isolates. For example, endophytic Fusarium spp. from cultivated rice roots proved to be effective in biocontrol of a root-knot nematode (28). The occurrence of mycorrhizal and endophytic fungi in a variety of rice cultivars has also recently been reported (63).Nondomesticated, wild plant species may live in symbiosis with a unique and rich mycoflora that may have been lost during breeding of the cultivars used in agriculture (20, 59). The purpose of this research was to characterize the endophytic fungal community of the roots of rare (nearly extinct) wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Our results showed that arbuscular mycorrhizal fungi were apparently absent from wild rice roots. This finding was confirmed by standard root staining techniques and molecular detection using the arbuscular mycorrhizal (AM)-specific primer pairs (69). The characterization of root endophytes in wild rice as reported in this study will improve our knowledge concerning the ecology and evolution of mutualistic plant-fungus interactions.  相似文献   

18.
19.
20.
In the diazotrophic filaments of heterocyst-forming cyanobacteria, an exchange of metabolites takes place between vegetative cells and heterocysts that results in a net transfer of reduced carbon to the heterocysts and of fixed nitrogen to the vegetative cells. Open reading frame alr2355 of the genome of Anabaena sp. strain PCC 7120 is the ald gene encoding alanine dehydrogenase. A strain carrying a green fluorescent protein (GFP) fusion to the N terminus of Ald (Ald-N-GFP) showed that the ald gene is expressed in differentiating and mature heterocysts. Inactivation of ald resulted in a lack of alanine dehydrogenase activity, a substantially decreased nitrogenase activity, and a 50% reduction in the rate of diazotrophic growth. Whereas production of alanine was not affected in the ald mutant, in vivo labeling with [14C]alanine (in whole filaments and isolated heterocysts) or [14C]pyruvate (in whole filaments) showed that alanine catabolism was hampered. Thus, alanine catabolism in the heterocysts is needed for normal diazotrophic growth. Our results extend the significance of a previous work that suggested that alanine is transported from vegetative cells into heterocysts in the diazotrophic Anabaena filament.Cyanobacteria such as those of the genera Anabaena and Nostoc grow as filaments of cells (trichomes) that, when incubated in the absence of a source of combined nitrogen, present two cell types: vegetative cells that perform oxygenic photosynthesis and heterocysts that perform N2 fixation. Heterocysts carry the oxygen-labile enzyme nitrogenase, and, thus, compartmentalization is the way these organisms separate the incompatible activities of N2 fixation and O2-evolving photosynthesis (9). In Anabaena and Nostoc, heterocysts are spaced along the filament so that approximately 1 in 10 to 15 cells is a heterocyst. Heterocysts differentiate from vegetative cells in a process that involves execution of a specific program of gene expression (12, 15, 39). In the N2-fixing filament, the heterocysts provide the vegetative cells with fixed nitrogen, and the vegetative cells provide the heterocysts with photosynthate (38). Two important aspects of the diazotrophic physiology of heterocyst-forming cyanobacteria that are still under investigation include the actual metabolites that are transferred intercellularly and the mechanism(s) of transfer (10).Because the ammonium produced by nitrogenase is incorporated into glutamate to produce glutamine in the heterocyst and because the heterocyst lacks the main glutamate-synthesizing enzyme, glutamine(amide):2-oxoglutarate amino transferase (GOGAT; also known as glutamate synthase), a physiological exchange of glutamine and glutamate resulting in a net transfer of nitrogen from the heterocysts to the vegetative cells has been suggested (21, 36, 37). On the other hand, a sugar is supposed to be transferred from vegetative cells to heterocysts. Because high invertase activity levels are found in the heterocysts (34) and because overexpression of sucrose-degrading sucrose synthase in Anabaena sp. impairs diazotrophic growth (4), it is possible that sucrose is a transferred carbon source. Indeed, determination of 14C-labeled metabolites in heterocysts isolated from filaments incubated for short periods of time with [14C]bicarbonate identified sugars and glutamate as possible compounds transferred from vegetative cells to heterocysts (13). However, this study also identified alanine as a metabolite possibly transported from vegetative cells to heterocysts.The cyanobacteria bear a Gram-negative type of cell envelope, carrying an outer membrane (OM) outside the cytoplasmic membrane (CM) and the peptidoglycan layer (9, 15). In filamentous cyanobacteria, whereas the CM and peptidoglycan layer surround each cell, the OM is continuous along the filament, defining a continuous periplasmic space (10, 19). In Anabaena sp. strain PCC 7120, the OM is a permeability barrier for metabolites such as glutamate and sucrose (27). Two possible pathways for intercellular molecular exchange in heterocyst-forming cyanobacteria have been discussed: the periplasm (10, 19) and cell-to-cell-joining proteinaceous structures (11, 22, 25). Whereas the latter would mediate direct transfer of metabolites between the cytoplasm of adjacent cells, the former would require specific CM permeases to mediate metabolite transfer between the periplasm and the cytoplasm of each cell type (10).In Anabaena sp. strain PCC 7120, two ABC-type amino acid transporters have been identified that are specifically required for diazotrophic growth (29, 30). The N-I transporter (NatABCDE), which shows preference for neutral hydrophobic amino acids, is present exclusively in vegetative cells (30). The N-II transporter (NatFGH-BgtA), which shows preference for acidic and neutral polar amino acids, is present in both vegetative cells and heterocysts (29). A general phenotype of mutants of neutral amino acid transporters in cyanobacteria is release into the culture medium of some hydrophobic amino acids, especially alanine (16, 23, 24), which is accumulated at higher levels in the extracellular medium of cultures incubated in the absence than in the presence of a source of combined nitrogen (30).Thus, alanine is a conspicuous metabolite in the diazotrophic physiology of heterocyst-forming cyanobacteria, and the possibility that it moves in either direction between heterocysts and vegetative cells has been discussed (13, 29, 30). Alanine dehydrogenase, which catalyzes the reversible reductive amination of pyruvate, has been detected in several cyanobacteria (8). In Anabaena spp., alanine dehydrogenase has been found at higher levels or exclusively in diazotrophic cultures (26), and in the diazotrophic filaments of Anabaena cylindrica it is present at higher levels in heterocysts than in vegetative cells (33). Open reading frame (ORF) alr2355 of the Anabaena sp. strain PCC 7120 genome is predicted to encode an alanine dehydrogenase (14). In this work we addressed the expression and inactivation of alr2355, identifying it as the Anabaena ald gene and defining an important catabolic role for alanine dehydrogenase in diazotrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号