首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed-function oxidation of Escherichia coli glutamine synthetase has previously been suggested to mark the enzyme for intracellular degradation, and in vitro studies have demonstrated that oxidation renders the enzyme susceptible to proteolytic attack. In this study, the susceptibility of glutamine synthetase to degradation by purified proteases has been compared with the rate of degradation after microinjection into hepatoma cells. Upon exposure to an ascorbate mixed-function oxidation system the enzyme rapidly loses most of its activity, but further oxidation is required to cause susceptibility to extensive proteolytic attack either by a high-molecular-weight liver cysteine proteinase or by trypsin. The rate of degradation of biosynthetically 14C-labeled native and oxidized glutamine synthetase preparations after injection into hepatoma cells parallels their susceptibility to proteolysis in vitro. Native enzyme preparations and enzyme oxidatively inactivated, but not susceptible to extensive degradation by purified proteases, had similar intracellular half-lives; however, oxidized enzyme preparations that were susceptible to proteolytic breakdown in vitro were degraded almost ten times faster than the native enzyme within the growing hepatoma cells. These results suggest that the same features of the oxidized enzyme that render it susceptible to proteolysis in vitro are also recognized by the intracellular degradation system. In addition, they show that loss of enzyme activity does not necessarily imply decreased metabolic stability.  相似文献   

2.
Four intracellular proteases partially purified from liver preferentially degraded the oxidatively modified (catalytically inactive) form of glutamine synthetase. One of the proteases was cathepsin D which is of lysosomal origin; the other three proteases were present in the cytosol. Two of these were calcium-dependent proteases with different calcium requirements. The low-calcium-requiring type (calpain I) accounted for most of the calcium-dependent activity of both mouse and rat liver. The calcium-independent cytosolic protease, referred to as the alkaline protease, has a molecular weight of 300,000 determined by gel filtration. Native glutamine synthetase was not significantly degraded by the cytosolic proteases at physiological pH, but oxidative modification of the enzyme caused a dramatic increase in its susceptibility to attack by these proteases. In contrast, trypsin and papain did degrade the native enzyme and the degradation of modified glutamine synthetase was only 2- to 4-fold more rapid. Adenylylation of glutamine synthetase had little effect on its susceptibility to proteolysis. Although major structural modifications such as dissociation, relaxation, and denaturation also increased the rate of degradation, the oxidative modification is a specific type of covalent modification which could occur in vivo. Oxidative modification can be catalyzed by a variety of mixed function oxidase systems present within cells and causes inactivation of a number of enzymes. Moreover, the presence of cytosolic proteases which recognize the oxidized form of glutamine synthetase suggests that oxidative modification may be involved in intracellular protein turnover.  相似文献   

3.
A soluble Escherichia coli protease has been identified and purified to homogeneity. The protease cleaves glutamine synthetase which has been modified by mixed function oxidation; native glutamine synthetase is not a substrate. Using [14C]glutamine synthetase as a substrate (prepared by growing E. coli on 14C-labeled amino acids), protease activity was assayed by determining the release of trichloroacetic acid-soluble material. The pure protease cleaves glutamine synthetase near the carboxyl terminus yielding 4,500 and 47,000 Mr products. The characteristics of this enzyme distinguish it from proteases previously purified from E. coli. These characteristics include a molecular weight of 75,000, alkaline pH optimum, lack of inhibition by serine protease inhibitors, and the ability to degrade insulin and casein. Oxidation of glutamine synthetase and other enzymes can be catalyzed by a variety of mixed function oxidase systems from bacterial and mammalian sources. Mixed function oxidation may be a "signal" or "marker" which consigns a protein for proteolytic degradation. Susceptibility to oxidation is subject to metabolic regulation, thereby providing control of proteolytic turnover. Isolation of a protease specific for modified glutamine synthetase provides the enzymatic basis for the specificity of this scheme.  相似文献   

4.
After oxidative damage (e.g. induced with iron, ascorbate, and oxygen), the inactivated glutamine synthetase is selectively hydrolyzed in extracts of Escherichia coli. We therefore tested if glutamine synthetase treated with this system is hydrolyzed preferentially by any of the known E. coli proteases. Protease So, a cytoplasmic serine protease, was found to degrade the oxidized form of glutamine synthetase to acid-soluble peptides 5-10 times faster than the native glutamine synthetase. Degradation of the oxidized glutamine synthetase was inhibited by EDTA and stimulated 5-10-fold by Mg2+, Ca2+, or Mn2+, even though casein hydrolysis by protease So is not affected by divalent cations. Apparently, these cations affect the conformation of this substrate, making it more susceptible to proteolytic attack. Protease Re, another cytoplasmic protease, also degrades preferentially the oxidized form of glutamine synthetase and seems to correspond to the glutamine synthetase-degrading activity recently described by Roseman and Levine [1987) J. Biol. Chem. 262, 2101-2110). However, it is much less active in this reaction than protease So. No other soluble E. coli protease, including Do, Ci, Mi, Fa, Pi, or the ATP-dependent proteases Ti and La (the lon product), appears to degrade this oxidized protein. These results suggest that protease So participates in the hydrolysis of oxidatively damaged proteins and that E. coli has multiple systems for degrading different types of aberrant proteins.  相似文献   

5.
The first step in the proteolytic degradation of bacterial glutamine synthetase is a mixed function oxidation of one of the 16 histidine residues in the glutamine synthetase subunit (Levine, R.L. (1983) J. Biol. Chem. 258, 11823-11827). A model system, consisting of oxygen, a metal ion, and ascorbic acid, mimics the bacterial system in mediating the oxidative modification of glutamine synthetase. This model system was studied to gain an understanding of the mechanism of oxidation and of factors which control the susceptibility of the enzyme to oxidation. Availability of substrates and the extent of covalent modification of the enzyme (adenylylation) interact to modulate susceptibility of the enzyme to oxidation. This interaction provides the biochemical basis for physiologic regulation of intracellular proteolysis of glutamine synthetase. The oxidative modification requires hydrogen peroxide. While the reaction may involve Fenton chemistry, the participation of free radicals, superoxide anion, and singlet oxygen could not be demonstrated.  相似文献   

6.
Mixed-function oxidation of Escherichia coli glutamine synthetase by ascorbate, oxygen, and iron has previously been shown to cause inactivation of the enzyme and enhanced susceptibility to proteolytic attack by a variety of proteases. One of these proteases, from rat liver, is a high molecular weight cysteine proteinase which does not degrade native glutamine synthetase at neutral pH. Although inactive, the oxidized glutamine synthetase preparations used in this study were only partially degraded by this proteinase. Some of the subunits were degraded to acid soluble products with no detectable intermediates; the remaining subunits had not become susceptible to proteolytic attack during the limited exposure to the ascorbate mixed-function oxidation system. Several mammalian enzymes which are known to be inactivated by mixed-function oxidation were tested as substrates for the proteinase. Native rabbit muscle enolase and pyruvate kinase were resistant to degradation, but their oxidatively inactivated forms were degraded. Oxidized phosphoglycerate kinase and creatine kinase were also preferentially degraded. Moreover, trypsin degraded oxidized preparations of all of these enzymes faster than control preparations. Oxidative inactivation of superoxide dismutase by hydrogen peroxide caused a slight increase in susceptibility to proteolytic attack, but the enzyme was still relatively resistant to degradation both by the cysteine proteinase and by trypsin. Although oxidation conditions may not have been optimal for demonstrating enhanced proteolytic susceptibility, the results do indicate that mixed-function oxidation can render some mammalian enzymes, as well as bacterial glutamine synthetase, susceptible to degradation. Mixed-function oxidation of these proteins may be a mechanism of marking them for intracellular turnover.  相似文献   

7.
Rat liver arginyl-tRNA synthetase is found in extracts either as a component (Mr = 72,000) of the multienzyme aminoacyl-tRNA synthetase complex or as a low molecular weight (Mr = 60,000) free protein. The two forms are thought to be identical except for an extra peptide extension at the NH2-terminus of the larger form which is required for its association with the complex, but is unessential for catalytic activity. It has been suggested that interactions among synthetases in the multienzyme complex are mediated by hydrophobic domains on these peptide extensions of the individual proteins. To test this model we have purified to homogeneity the larger form of arginyl-tRNA synthetase and compared its hydrophobicity to that of its low molecular weight counterpart. We show that whereas the smaller protein displays no hydrophobic character, the larger protein demonstrates a high degree of hydrophobicity. No lipid modification was found on the high molecular weight protein indicating that the amino acid sequence itself is responsible for its hydrophobic properties. These findings support the proposed model for synthetase association within the multienzyme complex.  相似文献   

8.
M Lazard  M Mirande  J P Waller 《Biochemistry》1985,24(19):5099-5106
Native isoleucyl-tRNA synthetase and a structurally modified form of methionyl-tRNA synthetase were purified to homogeneity following trypsinolysis of the high molecular weight complex from sheep liver containing eight aminoacyl-tRNA synthetases. The correspondence between purified isoleucyl-tRNA synthetase and the previously unassigned polypeptide component of Mr 139 000 was established. It is shown that dissociation of this enzyme from the complex has no discernible effect on its kinetic parameters. Both isoleucyl- and methionyl-tRNA synthetases contain one zinc ion per polypeptide chain. In both cases, removal of the metal ion by chelating agents leads to an inactive apoenzyme. As the trypsin-modified methionyl-tRNA synthetase has lost the ability to associate with other components of the complex [Mirande, M., Kellermann, O., & Waller, J. P. (1982) J. Biol. Chem. 257, 11049-11055], the zinc ion is unlikely to be involved in complex formation. While native purified isoleucyl-tRNA synthetase displays hydrophobic properties, trypsin-modified methionyl-tRNA synthetase does not. It is suggested that the assembly of the amino-acyl-tRNA synthetase complex is mediated by hydrophobic domains present in these enzymes.  相似文献   

9.
Monoraphidium braunii glutamine synthetase is inactivated by several mixed-function oxidation systems. Inactivation requires oxygen and a metal cation as it does not take place under anaerobic conditions or in the presence of EDTA. Glutamine synthetase can be protected against that inactivation by peroxidase and catalase but not by superoxide dismutase indicating that hydrogen peroxide is involved in the process, although hydrogen peroxide is not itself effective. The oxidative modification of glutamine synthetase renders the protein more sensitive to temperature and susceptible to proteolytic attack. This has been demonstrated by measuring by quantitative immunoelectrophoresis the levels of glutamine synthetase antigen, in enzymatic preparations treated with different oxidation systems. Besides, immunoblotting of crude extracts in the presence of mixed-function oxidation systems shows the disappearance of material cross-reacting with anti-glutamine synthetase antibodies. Other results show that glutamine synthetase from Chlamydomonas reinhardtii could be subjected to the same kind of oxidative inactivation. The possible regulatory role of oxidative modification of glutamine synthetase in green algae is discussed.  相似文献   

10.
Oxidation of Neurospora crassa glutamine synthetase.   总被引:3,自引:2,他引:1       下载免费PDF全文
The glutamine synthetase of Neurospora crassa, either purified or in cell extracts, was inactivated by ascorbate plus FeCl3 and by H2O2 plus FeSO4. The inactivation reaction was oxygen dependent, inhibited by MnCl2 and EDTA, and stimulated in cell extracts by sodium azide. This inactivation could also be brought about by adding NADPH to the cell extract. The alpha and beta polypeptides of the active glutamine synthetase were modified by these inactivating reactions, giving rise to two novel acidic polypeptides. These modifications were observed with the purified enzyme, with cell extracts, and under in vivo conditions in which glutamine synthetase is degraded. The modified glutamine synthetase was more susceptible to endogenous phenylmethylsulfonyl fluoride-insensitive proteolytic activity, which was inhibited by MnCl2 and stimulated by EDTA. The possible physiological relevance of enzyme oxidation is discussed.  相似文献   

11.
The glutamine synthetases from several Pseudomonas species were purified to homogeneity, and their properties were compared with those reported for the enzymes from Escherichia coli and other gram-negative bacteria. The glutamine synthetase from Pseudomonas fluorescens was unique because it was nearly precipitated quantitatively as a homogeneous protein during dialysis of partially purified preparations against buffer containing 10 mM imidazole (pH 7.0) and 10 mM MnCl2. The glutamine synthetases from Pseudomonas putida and Pseudomonas aeruginosa were purified by affinity chromatography on Affi-blue gel. Dodecamerous forms of the E. coli and P. fluorescens glutamine synthetases had identical mobilities during polyacrylamide gel electrophoresis. Their dissociated subunits, however, migrated differently and were readily separated by electrophoresis on polyacrylamide gels containing 0.1% sodium dodecyl sulfate. This difference in subunit mobilities is not related to the state of adenylylation. Regulation of the Pseudomonas glutamine synthetase activity is mediated by an adenylylation-deadenylylation cyclic cascade system. A sensitive procedure was developed for measuring the average number of adenylylated subunits per enzyme molecule for the glutamine synthetase from P. fluorescens. This method takes advantage of the large differences in transferase activity of the adenylylated and unadenylylated subunits at pH 6.0 and of the fact that the activities of both kinds of subunits are the same at pH 8.45.  相似文献   

12.
The high molecular weight aminoacyl-tRNA synthetase complexes found in extracts of many eukaryotic cells often contain lipids and other non-protein components. Since hydrophobic interactions play an important role in maintaining synthetases in the complex, it has been suggested that the lipids present may also participate in its functional and structural integrity. In order to learn more about the role of lipids in the complex, we have compared the properties of the normal complex to one which has been delipidated by treatment with Triton X-114. Delipidation does not affect the size or activity of the aminoacyl-tRNA synthetase complex, but a variety of functional and structural properties of individual synthetases in the complex are altered dramatically. These include sensitivity to salts plus detergents, temperature inactivation, hydrophobicity, and sensitivity to protease digestion. In the latter case, removal of lipids also affects the low molecular weight products released by protease digestion. Purification of the synthetase complex by various chromatographic procedures can remove the lipids and lead to a structure that behaves like the delipidated complex prepared by detergent treatment. The significance of these findings for the intracellular location of aminoacyl-tRNA synthetases and for the study of purified complexes are discussed.  相似文献   

13.
The glutamine synthetase and the NADP-specific glutamate dehydrogenase activities of Neurospora crassa were lost in a culture without carbon source only when in the presence of air. Glutamine synthetase was previously reported to be liable to in vitro and in vivo inactivation by activated oxygen species. Here we report that NADP-specific glutamate dehydrogenase was remarkably stable in the presence of activated oxygen species but was rendered susceptible to oxidative inactivation when chelated iron was bound to the enzyme and either ascorbate or H2O2 reacted on the bound iron. This reaction gave rise to further modifications of the enzyme monomers by activated oxygen species, to partial dissociation of the oligomeric structure, and to precipitation and fragmentation of the enzyme. The in vitro oxidation reaction was affected by pH, temperature, and binding to the enzyme of NADPH. Heterogeneity in total charge was observed in the purified and immunoprecipitated enzymes, and the relative amounts of enzyme monomers with different isoelectric points changes with time of the oxidizing reaction.  相似文献   

14.
Protease Re, a new cytoplasmic endoprotease in Escherichia coli, was purified to homogeneity by conventional procedures, using [3H]casein as the substrate. The enzyme consists of a single polypeptide of 82,000 molecular weight. It is maximally active between pH 7 and 8.5 and is independent of ATP. It has a pI of 6.8 and a Km of 10.8 microM for casein. Since diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride inhibited this enzyme, it appears to be a serine protease. Protease Re was sensitive to inhibition by L-1-tosylamido-2-phenylethylchloromethylketone but not to that by 1-chloro-3-tosylamido-7-aminoheptanone, thiol-blocking reagents, chelating agents, or various peptide aldehydes. Re also degraded [125I]globin, [125I]glucagon, and 125I-labeled denatured bovine serum albumin to acid-soluble products (generally oligopeptides of greater than 1,500 daltons), but it showed no activity against serum albumin, growth hormone, insulin, or a variety of fluorometric peptide substrates. It also hydrolyzed oxidatively inactivated glutamine synthetase (generated by ascorbate, oxygen, and iron) four- to fivefold more rapidly than the native protein. Protease Re appears to be identical to the proteolytic enzyme isolated by Roseman and Levine (J. Biol. Chem. 262:2101-2110, 1987) by its ability to degrade selectively oxidatively damaged glutamine synthetase in vivo. Its role in intracellular protein breakdown is uncertain.  相似文献   

15.
CMP-beta-N-acetylneuraminic acid (CMP-neuNAc) is the substrate for the sialylation of glycoconjugates by sialyltransferases in microbes and higher eukaryotes. CMP-neuNAc synthetase catalyzes the formation of this substrate, CMP-neuNAc, from CTP and neuNAc. In this report we describe the purification of CMP-neuNAc synthetase from bovine anterior pituitary glands. The enzyme was purified by ion exchange, gel filtration, and affinity chromatography. The protein was homogeneous on SDS-PAGE with a molecular weight of 52 kDa, a subunit size similar to that of the E.coli K1 (48.6 kDa). The identity of the 52 kDa protein band was confirmed by native gel electrophoresis in that the position of the enzyme activity in gel slices coincided with the position of major bands in the stained gel. Photoaffinity labeling with 125I-ASA-CDP ethanolamine resulted in the modification of a 52 kDa polypeptide that was partially protected against modification by the substrate CTP. Enzyme activity in crude fractions could be adsorbed onto an immunoadsorbent prepared from antibody against the purified 52 kDa protein. Taken together these data suggest that the 52 kDa polypeptide purified by this procedure described in this report is indeed CMP-neuNAc synthetase. The active enzyme chromatographed on a gel filtration column at 158 kDa suggesting it exists in its native form as an oligomer.  相似文献   

16.
Since glutamine synthetase (GS) has been proposed as the primary enzyme in the regulation of glutamate metabolism in the central nervous system and since inhibition of the activity of this enzyme in vivo leads to seizures, it has been proposed that an abnormality in the structure or function of this enzyme could be responsible for the induction of seizures in epilepsy prone rats. To test this hypothesis the glutamine synthetases were purified from the brains of both genetically epilepsy prone rats (GEPR) and their progenitors, genetically epilepsy resistant rats (GERR). The enzymes were compared using both SDS-PAGE and isoelectric focusing. The immunoreactivities of equal amounts of protein were determined using the ELISA technique, and the regulation of the glutamine synthetase activities by Mn2+/Mg2+ ratios were compared. The only difference found between the glutamine synthetases from the two strains was a slightly lower specific activity of the enzyme from the epilepsy prone animals.  相似文献   

17.
Glutamine synthetase from a Gram-positive acid-fast bacterium, Mycobacterium smegmatis, was purified to homogeneity from cells grown with glycerol-bouillon medium. Electron micrographs of the enzyme revealed a dodecameric arrangement of its subunits in two superimposed hexagonal rings, similar to the structure of glutamine synthetase of Escherichia coli. Disc electrophoresis in the presence of sodium dodecyl sulfate indicated a subunit molecular weight of 56,000. The sedimentation coefficient of the native enzyme was estimated to be 19.4S by ultracentrifugation in a sucrose gradient. Like the E. coli enzyme, the glutamine synthetase from M. smegmatis is regulated by adenylylation/deadenylylation. This conclusion was based on studies of the effect of snake venom phosphodiesterase treatment on the catalytic and spectral properties of the isolated enzyme. The AMP released from the enzyme by the phosphodiesterase was identified by thin-layer chromatography. Despite the structural similarity of both enzymes, striking differences were found between the catalytic properties of M. smegmatis and E. coli glutamine synthetases. The divalent cation specificity of the M. smegmatis enzyme was not altered by adenylylation of the enzyme, and deadenylylation of the enzyme caused a significant increase in the specific activities for both biosynthetic and transfer reactions with either Mg2+ or Mn2+.  相似文献   

18.
Lysyl-tRNA synthetase occurs in the high molecular weight form in rat liver. The high molecular weight lysyl-tRNA synthetase has been previously demonstrated to exist as multienzyme complexes of aminoacyl-tRNA synthetases. The multienzyme complexes can be dissociated by hydrophobic interaction chromatography and yield fully active, free lysyl-tRNA synthetase. The free form is found to be twice as active as the complexed form in lysylation. Bisubstrate and product inhibition kinetics of lysylation are systematically carried out for highly purified free lysyl-tRNA synthetase and the 18 S synthetase complex. Surprisingly, the two enzyme forms exhibit distinctly different kinetic patterns in bisubstrate and product inhibition kinetics under identical conditions. The 18 S synthetase complex shows kinetic patterns consistent with an ordered bi uni uni bi ping pong mechanism, while the results of free lysyl-tRNA synthetase do not. We conclude that structural organization of lysyl-tRNA synthetase beyond quaternary structure of proteins may alter the enzyme behavior.  相似文献   

19.
Glutamine synthetase in Bacillus brevis AG 4, a Gram-positive spore forming bacteria, has been found to exist in multiple molecular forms. It was purified to electrophoretic homogeneity by single-step Blue Sepharose affinity chromatography. The native enzyme has a molecular weight of 600,000 with subunits of 50,000. The enzyme samples purified from different stages of growth differed in Mg2+ sensitivity and other kinetic properties. Four different enzyme samples selected on the basis of Mg2+ sensitivity showed distinct mobilities at pH 6.3 on PAGE using discontinuous buffer system. A correlation amongst Mg2+ sensitivity, electrophoretic mobility, and kinetic properties was highly suggestive of multiple forms of glutamine synthetase in Bacillus brevis arising due to modification.  相似文献   

20.
1. Tryptophan synthetase B of three strains of Bacillus subtilis was prepared from ;exo-protoplastic' and ;endo-protoplastic' fractions; the enzyme from ;exo-protoplastic' fraction was purified 30- to 120-fold by ammonium sulphate precipitation and DEAE-cellulose column chromatography; the latter step separated this enzyme from tryptophan synthetase A, tryptophanase and proteolytic enzymes, but the purified preparations were not stable. 2. The activity of tryptophan synthetase B did not depend on the presence of tryptophan synthetase A. 3. Tryptophan synthetases B of the strains tested differed in their utilization of 2- and 7-methylindole as compared with indole; this suggests that these tryptophan synthetases B are not identical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号