首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Wastewater discharges introduce antibiotic residues and antibiotic‐resistant bacteria (ARB) into surface waters. Both inputs directly affect the streambed resistome, either by exerting a selective pressure that favour the proliferation of resistant phenotypes or by enriching the resident communities with wastewater‐associated ARB. Here, we investigated the impact of raw and treated urban wastewater discharges on epilithic (growing on rocks) and epipsammic (growing on sandy substrata) streambed biofilms. The effects were assessed by comparing control and impact sites (i) on the composition of bacterial communities; (ii) on the abundance of twelve antibiotic resistance genes (ARGs) encoding resistance to β‐lactams, fluoroquinolones, sulphonamides, tetracyclines, macrolides and vancomycin, as well as the class 1 integron‐integrase gene (intI1); (iii) on the occurrence of wastewater‐associated bacteria, including putative pathogens, and their potential linkage to target ARGs. We measured more pronounced effects of raw sewage than treated wastewater at the three studied levels. This effect was especially noticeable in epilithic biofilms, which showed a higher contribution of wastewater‐associated bacteria and ARB than in epipsammic biofilms. Comparison of correlation coefficients obtained between the relative abundance of both target ARGs and operational taxonomic units classified as either potential pathogens or nonpathogens yielded significant higher correlations between the former category and genes intI1, sul1, sul2 and ermB. Altogether, these results indicate that wastewater‐associated micro‐organisms, including potential pathogens, contribute to maintain the streambed resistome and that epilithic biofilms appear as sensitive biosensors of the effect of wastewater pollution in surface waters.  相似文献   

2.
The aqueous environment is one of many reservoirs of antibiotic resistance genes (ARGs). Fish, as important aquatic animals which possess ideal intestinal niches for bacteria to grow and multiply, may ingest antibiotic resistance bacteria from aqueous environment. The fish gut would be a suitable environment for conjugal gene transfer including those encoding antibiotic resistance. However, little is known in relation to the impact of ingested ARGs or antibiotic resistance bacteria (ARB) on gut microbiota. Here, we applied the cultivation method, qPCR, nuclear molecular genetic marker and 16S rDNA amplicon sequencing technologies to develop a plasmid‐mediated ARG transfer model of zebrafish. Furthermore, we aimed to investigate the dissemination of ARGs in microbial communities of zebrafish guts after donors carrying self‐transferring plasmids that encode ARGs were introduced in aquaria. On average, 15% of faecal bacteria obtained ARGs through RP4‐mediated conjugal transfer. The hindgut was the most important intestinal region supporting ARG dissemination, with concentrations of donor and transconjugant cells almost 25 times higher than those of other intestinal segments. Furthermore, in the hindgut where conjugal transfer occurred most actively, there was remarkable upregulation of the mRNA expression of the RP4 plasmid regulatory genes, trbBp and trfAp. Exogenous bacteria seem to alter bacterial communities by increasing Escherichia and Bacteroides species, while decreasing Aeromonas compared with control groups. We identified the composition of transconjugants and abundance of both cultivable and uncultivable bacteria (the latter accounted for 90.4%–97.2% of total transconjugants). Our study suggests that aquatic animal guts contribute to the spread of ARGs in water environments.  相似文献   

3.
The spread of antibiotic-resistant bacteria is a threatening risk for human health at a global scale. Improved knowledge on the cycle of antibiotic resistance spread between human and the environment is a major requirement for the management of the current crisis. Compared to the well-studied cycle in clinical settings much less is known about the factor allowing their persistence in the environment. In fact, lakes and rivers exposed to high anthropogenic impact seem to become long-term reservoirs for resistance genes. The presence of antibiotic resistance genes (ARGs) within the resident microbiome of large subalpine lakes (i.e. Lake Geneva, Lake Maggiore) has recently been investigated in both the water column and the sediment. These studies suggest a correlation between the abundance of some ARGs and the anthropogenic impact. Within the system, however, abiotic factors and the food-web structure determine the survival of specific bacterial genotypes and thus the resistance genes they harbour. Thus, a growing body of work suggests an important role of ecological interactions in the persistence or elimination of such genes from the environment. This article reviews the current literature regarding the presence of ARGs in subalpine lakes, the impact of anthropogenic pollution on their appearance and the potential role of various ecological interactions on their persistence in the system.  相似文献   

4.
【目的】分析有机、化肥和野生折耳根表面的附生细菌群落结构和抗生素抗性基因(ARGs),揭示细菌群落结构与ARGs相互关系。【方法】高通量测定16SrRNAV3-V4可变区序列分析样品表面附生细菌群落结构;PCR和qPCR扩增29种ARGs基因分析样品表面ARGs污染情况;冗余分析(RDA)探讨细菌群落结构与ARGs的相互关系。【结果】折耳根表面检测到35个属的细菌,其中有机折耳根表面附生细菌多样性低于化肥和野生折耳根(P0.05);29种被检的ARGs中,有14种在折耳根中被检出,其中有机折耳根含有全部被检出的ARGs,化肥和野生折耳根则含有部分被检出的ARGs。折耳根表面ARGs污染的多样性和丰度显著受到样品表面的菌群结构影响,其中Lactococcus、 Escherichia、Fluviicola、Enterococcus、Sanguibacter和Acidovorax是影响ARGs最主要的菌群。【结论】有机种植极大地改变了折耳根表面附生细菌的群落结构,增加了ARGs的多样性和丰度,对有机折耳根的食品安全带来了潜在威胁。因此,有必要将ARGs污染监测纳入到有机折耳根的食品安全考核范围内。  相似文献   

5.
多重耐药菌在人类、动物和环境的耐药和传播机制   总被引:2,自引:1,他引:1  
王娟  王新华  徐海 《微生物学报》2016,56(11):1671-1679
抗生素等抗菌药物的滥用在全球范围内造成了多重耐药菌的传播。多重耐药菌(Multidrug resistant organisms,MDRO)以及耐药基因(Antibiotic resistance genes,ARGs)可在人类、动物和环境之间进行传播,尤其是ARGs可以通过水平转移的方式在同种属或者不同种属的菌群之间进行传播,使得细菌耐药问题日益严重,耐药机制趋于复杂,疾病治疗更加困难,对人类公众健康造成严重的威胁。因此抗生素等抗菌药物的使用应加以规范。  相似文献   

6.
The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.  相似文献   

7.
Animal manures and municipal biosolids recycled onto crop production land carry antibiotic-resistant bacteria that can influence the antibiotic resistome of agricultural soils, but little is known about the contribution of bacteriophage to the dissemination of antibiotic resistance genes (ARGs) in this context. In this work, we quantified a set of ARGs in the bacterial and bacteriophage fractions of agricultural soil by quantitative PCR. All tested ARGs were present in both the bacterial and phage fractions. We demonstrate that fertilization of soil with dairy manure or human biosolids increases ARG abundance in the bacterial fraction but not the bacteriophage fraction and further show that pretreatment of dairy manure can impact ARG abundance in the bacterial fraction. Finally, we show that purified bacteriophage can confer increased antibiotic resistance to soil bacteria when combined with selective pressure. The results indicate that soilborne bacteriophage represents a substantial reservoir of antibiotic resistance and that bacteriophage could play a significant role in the horizontal transfer of resistance genes in the context of an agricultural soil microbiome. Overall, our work reinforces the advisability of composting or digesting fecal material prior to field application and suggests that application of some antibiotics at subclinical concentrations can promote bacteriophage-mediated horizontal transfer of ARGs in agricultural soil microbiomes.  相似文献   

8.
Shi  Yanhong  Zhang  Hong  Tian  Zhe  Yang  Min  Zhang  Yu 《Applied microbiology and biotechnology》2018,102(4):1847-1858

Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying ≥ 2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations.

  相似文献   

9.
Soil is a reservoir of microbial diversity and the most supportive habitat for acquiring and transmitting antimicrobial resistance. Resistance transfer usually occurs from animal to soil and vice versa, and it may ultimately appear in clinical pathogens. In this study, the southwestern highlands of Saudi Arabia were studied to assess the bacterial diversity and antimicrobial resistance that could be affected by the continuous development of tourism in the region. Such effects could have a long-lasting impact on the local environment and community. Culture-dependent, quantitative polymerase chain reaction (qPCR), and shotgun sequencing-based metagenomic approaches were used to evaluate the diversity, functional capabilities, and antimicrobial resistance of bacteria isolated from collected soil samples. Bacterial communities in the southwestern highlands were mainly composed of Proteobacteria, Bacteroidetes, and Actinobacteria. A total of 102 antimicrobial resistance genes (ARGs) and variants were identified in the soil microbiota and were mainly associated with multidrug resistance, followed by macrolide, tetracycline, glycopeptide, bacitracin, and beta-lactam antibiotic resistance. The mechanisms of resistance included efflux, antibiotic target alteration, and antibiotic inactivation. qPCR confirmed the detection of 18 clinically important ARGs. In addition, half of the 49 identified isolates were phenotypically resistant to at least one of the 15 antibiotics tested. Overall, ARGs and indicator genes of anthropogenic activities (human-mitochondrial [hmt] gene and integron-integrase [int1]) were found in relatively lower abundance. Along with a high diversity of bacterial communities, variation was observed in the relative abundance of bacterial taxa among sampling sites in the southwestern highlands of Saudi Arabia.  相似文献   

10.
食品动物养殖环境中细菌耐药性研究进展   总被引:2,自引:0,他引:2  
抗生素耐药性被世界卫生组织认为是21世纪人类面临的最大的公共卫生安全问题之一。近年来,抗生素耐药基因作为一种新型污染物而受到广泛关注。养殖场现已成为耐药基因的一个重要储库,耐药菌及耐药基因随着动物排泄物进入环境,从而加速了耐药基因在环境中的传播。畜禽养殖环境中耐药基因和耐药菌可能经食物链、空气等途径传至人类,给人类健康带来巨大威胁。文中结合最新文献,主要介绍了动物养殖场抗菌药物耐药菌和耐药基因的分布特点、耐药基因的持留和传播扩散、研究方法等方面的研究进展,为食品动物养殖环境的抗菌药物耐药性风险评估提供一定支持。  相似文献   

11.
环境中抗生素抗性基因与I型整合子的研究进展   总被引:4,自引:1,他引:3  
抗生素抗性基因(Antibiotic resistance genes,ARGs)作为一种新型污染物在不同环境中广泛分布、来源复杂,对生态环境和人类健康造成了很大的潜在风险。同时,Ⅰ型整合子(Int Ⅰ)介导的ARGs水平转移是环境中微生物产生耐药性的重要途径,Ⅰ型整合子整合酶基因(intI1)与ARGs丰度在环境中表现出了较高的正相关性,Int Ⅰ可以作为标记物在一定程度上反映ARGs在环境中的迁移转化规律和人类活动影响程度。本文介绍ARGs与Int Ⅰ在环境中的来源与分布,总结Int Ⅰ介导的ARGs迁移转化机制以及相关研究方法,并展望未来的研究发展趋势。  相似文献   

12.
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.  相似文献   

13.
Horizontal transfer of antibiotic resistance genes in a membrane bioreactor   总被引:1,自引:0,他引:1  
Growing attention has been paid to the dissemination of antibiotic resistance genes (ARGs) in wastewater microbial communities. The application of membrane bioreactors (MBRs) in wastewater treatment is becoming increasingly widespread. We hypothesized that the transfer of ARGs among bacteria could occur in MBRs, which combine a high density of bacterial cells, biofilms, and antibiotic resistance bacteria or ARGs. In this study, the transfer discipline and dissemination of the RP4 plasmid in MBRs were investigated by the counting plate method, the MIDI microorganism identification system, and quantitative polymerase chain reaction (qPCR) techniques. The results showed that the average transfer frequency of the RP4 plasmid from the donor strain to cultivable bacteria in activated sludge was 2.76 × 10−5 per recipient, which was greater than the transfer frequency in wastewater and bacterial sludge reported previously. In addition, many bacterial species in the activated sludge had received RP4 by horizontal transfer, while the genera of Shewanella spp., Photobacterium spp., Pseudomonas spp., Proteus spp., and Vibrio spp. were more likely to acquire this plasmid. Interestingly, the abundance of the RP4 plasmid in total DNA remained at high levels and relatively stable at 104 copies/mg of biosolids, suggesting that ARGs were transferred from donor strains to activated sludge bacteria in our study. Thus, the presence of ARGs in sewage sludge poses a potential health threat.  相似文献   

14.
15.
The bacterial infection that involves antimicrobial resistance is a rising global threat to public health. Chlorine-based water disinfection processes can inactivate antibiotic resistant bacteria. However, at the same time, these processes may cause the release of antibiotic resistance genes into the water as free DNA, and consequently increase the risk to disseminate antibiotic resistance via natural transformation. Presently, little is known about the contribution of residual chlorine affecting the transformation of extracellular antibiotic resistance genes (ARGs). This study investigates whether chloramine and free chlorine promote the transformation of ARGs and how this may occur. We reveal that both chloramine and free chlorine, at practically relevant concentrations, significantly stimulated the transformation of plasmid-encoded ARGs by the recipient Acinetobacter baylyi ADP1, by up to a 10-fold increase. The underlying mechanisms underpinning the increased transformations were revealed. Disinfectant exposure induced a series of cell responses, including increased levels of reactive oxygen species (ROS), bacterial membrane damage, ROS-mediated DNA damage, and increased stress response. These effects thus culminated in the enhanced transformation of ARGs. This promoted transformation was observed when exposing disinfectant-pretreated A. baylyi to free plasmid. In contrast, after pretreating free plasmid with disinfectants, the transformation of ARGs decreased due to the damage of plasmid integrity. These findings provide important insight on the roles of disinfectants affecting the horizontal transfer of ARGs, which could be crucial in the management of antibiotic resistance in our water systems.Subject terms: Antibiotics, Public health  相似文献   

16.
近年来,抗生素滥用造成的抗性基因(ARGs)污染问题引起了人们的关注.四环素及磺胺类抗生素由于价格低廉被广泛使用,大量残留的四环素和磺胺通过各种途径进入污水处理厂,并进一步导致ARGs的污染.为深入了解四环素和磺胺类ARGs的污染及治理现状,本研究对污水处理厂中四环素和磺胺类ARGs的分布情况及传播机制进行了综述,并重点讨论了不同污水处理工艺对ARGs的去除效果.在此基础上,从加大污水处理厂ARGs污染调查、改进污水处理工艺以及探讨ARGs传播机制等方面进行了展望.  相似文献   

17.
抗生素的不合理使用导致细菌耐药问题日趋严峻,给人类健康造成巨大威胁。学者们对抗生素抗性菌和抗生素抗性基因(antibiotic resistance genes, ARGs)在多种环境介质中的环境行为开展了大量研究。气溶胶作为ARGs的潜在储存库,是抗生素抗性基因在环境中的重要传播途径之一。目前缺乏对其来源、传播、人类接触和健康风险系统性的梳理。本文针对人类生活功能场所、养殖场、城市污水处理厂和医院等4类气溶胶研究的典型场所,重点综述了上述4类典型场所中气溶胶ARGs的来源、传播途径及对人体的暴露和对健康的危害,为气溶胶中ARGs的预防和控制提供参考。  相似文献   

18.
The usage of antibiotics in animal husbandry has promoted the development and abundance of antibiotic resistance in farm environments. Manure has become a reservoir of resistant bacteria and antibiotic compounds, and its application to agricultural soils is assumed to significantly increase antibiotic resistance genes and selection of resistant bacterial populations in soil. The genome location of resistance genes is likely to shift towards mobile genetic elements such as broad-host-range plasmids, integrons, and transposable elements. Horizontal transfer of these elements to bacteria adapted to soil or other habitats supports their environmental transmission independent of the original host. The human exposure to soil-borne resistance has yet to be determined, but is likely to be severely underestimated.  相似文献   

19.
细菌在抗菌药选择性压力下产生耐药性并可传代,通过质粒和整合子等可移动基因元件将耐药基因在相同或不同种属中广泛传播,导致细菌多重耐药,并可通过多种途径进入水体,水环境日益成为庞大的耐药基因库,为致病菌及条件致病菌提供获得大量耐药基因的机会,若多重耐药菌再次侵入人体,可能引发严重的公共卫生问题。  相似文献   

20.
九龙江河口及厦门污水处理设施抗生素抗性基因污染分析   总被引:3,自引:0,他引:3  
【目的】近年来由于抗生素的滥用,导致了多药物抗性超级细菌的产生,有关抗生素抗性基因(Antibiotic resistance genes,ARGs)在环境介质中分布、迁移和扩散已经引起人们的广泛关注。针对九龙江河口及厦门污水处理设施抗生素抗性基因污染情况开展研究。【方法】通过定性PCR研究九龙江河口水体、沉积物和厦门污水处理设施活性污泥中4种磺胺类、13种四环素类ARGs及2种整合子基因的污染情况,并选择四环素类tet(W)基因进行克隆文库测序分析。【结果】除tet(O)和tet(S)外,其他基因均被检出。不同环境介质中的ARGs及整合子基因检出率为活性污泥(0.86)>沉积物(0.57)>水体(0.24)。在淡水和淡盐水中,sul(l)、int(1)、tet(A)、tet(C)、tet(E)、tet(M)和tet(W)的检出率要高于海水,表明九龙江上游可能是ARGs的污染源之一。【结论】主成分分析表明污水处理设施是ARGs的高发载体;沉积物是ARGs的稳定载体;而水体中的ARGs易于分解。此外,tet(W)基因克隆文库分析表明,厦门污水处理设施也可能是九龙江河口及厦门沿岸的ARG污染源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号