首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype‐environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large‐scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi.  相似文献   

2.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

3.
Threespine stickleback populations are model systems for studying adaptive evolution and the underlying genetics. In lakes on the Haida Gwaii archipelago (off western Canada), stickleback have undergone a remarkable local radiation and show phenotypic diversity matching that seen throughout the species distribution. To provide a historical context for this radiation, we surveyed genetic variation at >1000 single nucleotide polymorphism (SNP) loci in stickleback from over 100 populations. SNPs included markers evenly distributed throughout genome and candidate SNPs tagging adaptive genomic regions. Based on evenly distributed SNPs, the phylogeographic pattern differs substantially from the disjunct pattern previously observed between two highly divergent mtDNA lineages. The SNP tree instead shows extensive within watershed population clustering and different watersheds separated by short branches deep in the tree. These data are consistent with separate colonizations of most watersheds, despite underlying genetic connections between some independent drainages. This supports previous suppositions that morphological diversity observed between watersheds has been shaped independently, with populations exhibiting complete loss of lateral plates and giant size each occurring in several distinct clades. Throughout the archipelago, we see repeated selection of SNPs tagging candidate freshwater adaptive variants at several genomic regions differentiated between marine–freshwater populations on a global scale (e.g. EDA, Na/K ATPase). In estuarine sites, both marine and freshwater allelic variants were commonly detected. We also found typically marine alleles present in a few freshwater lakes, especially those with completely plated morphology. These results provide a general model for postglacial colonization of freshwater habitat by sticklebacks and illustrate the tremendous potential of genome‐wide SNP data sets hold for resolving patterns and processes underlying recent adaptive divergences.  相似文献   

4.
Understanding the processes that drive divergence within and among species is a long‐standing goal in evolutionary biology. Traditional approaches to assessing differentiation rely on phenotypes to identify intra‐ and interspecific variation, but many species express subtle morphological gradients in which boundaries among forms are unclear. This intraspecific variation may be driven by differential adaptation to local conditions and may thereby reflect the evolutionary potential within a species. Here, we combine genetic and morphological data to evaluate intraspecific variation within the Nelson's (Ammodramus nelsoni) and salt marsh (Ammodramus caudacutus) sparrow complex, a group with populations that span considerable geographic distributions and a habitat gradient. We evaluated genetic structure among and within five putative subspecies of A. nelsoni and A. caudacutus using a reduced‐representation sequencing approach to generate a panel of 1929 SNPs among 69 individuals. Although we detected morphological differences among some groups, individuals sorted along a continuous phenotypic gradient. In contrast, the genetic data identified three distinct clusters corresponding to populations that inhabit coastal salt marsh, interior freshwater marsh and coastal brackish–water marsh habitats. These patterns support the current species‐level recognition but do not match the subspecies‐level taxonomy within each species—a finding which may have important conservation implications. We identified loci exhibiting patterns of elevated divergence among and within these species, indicating a role for local selective pressures in driving patterns of differentiation across the complex. We conclude that this evidence for adaptive variation among subspecies warrants the consideration of evolutionary potential and genetic novelty when identifying conservation units for this group.  相似文献   

5.
Beak shape in Darwin's ground finches (Geospiza) is emblematic of natural selection and adaptive radiation, yet our understanding of the genetic basis of beak shape variation, and thus the genetic target of natural selection, is still evolving. Here we reveal the genomic architecture of beak shape variation using genomewide comparisons of four closely related and hybridizing species across 13 islands subject to parallel natural selection. Pairwise contrasts among species were used to identify a large number of genomic loci that are consistently related to species differences across a complex landscape. These loci are associated with hundreds of genes that have enriched GO categories significantly associated with development. One genomic region of particular interest is a section of Chromosome 1A with many candidate genes and increased linkage. The distinct, pointed beak shape of the cactus finch is linked to an excess of intermediate frequency alleles and increased heterozygosity in significant SNPs, but not across the rest of the genome. Alleles associated with pointier beaks among species were associated with pointier‐beaked populations within each species, thus establishing a common basis for natural selection, species divergence and adaptive radiation. The adaptive genomic landscape for Darwin's finches mirrors theoretical expectations based on morphological variation. The implication that a large number of genes are actively maintained to facilitate beak variation across parallel populations with documented interspecies admixture challenges our understanding of evolutionary processes in the wild.  相似文献   

6.
Alcolapia is a minor genus of small-bodied, polymorphic cichlids inhabiting the lagoons and hot springs surrounding the soda lakes Natron (largely in Tanzania) and Magadi (Kenya). Three Alcolapia species are present at Natron (Alcolapia alcalicus, Alcolapia ndalalani and Alcolapia latilabris) and one at Magadi (Alcolapia grahami). All are IUCN Red Listed as either vulnerable or endangered. We performed analyses of morphometric and genetic structure on 13 populations of the Natron Alcolapia flock, and one A. grahami population of Lake Magadi as an out-group. Morphometric analyses revealed significant differentiation in the head and mouth shape of the species at Natron. From a genetic perspective, among 70 mtDNA control region sequences 17 haplotypes were found, showing in the minimum spanning network a star-like pattern around the widespread haplotype 2lat. At Natron, there was limited genetic differentiation between the different populations of A. alcalicus and A. latilabris, despite apparent ecological barriers of extreme alkalinity that suggested their populations were isolated. Instead, there appeared to be some population connectivity, with a rate of 0.5–2.3 migrants per generation suggesting that natural factors, such as intense rains or transmission by large piscivorous birds, facilitate population connectivity and maintain genetic similarity. The outputs of high population connectivity and one genetic unit at the basin level (despite morphological divergence) suggest that any human activities that disrupt the connectivity of the freshwater resources of the Natron catchment could further threaten the integrity and current status of these already threatened fish populations.  相似文献   

7.
Ecological diversification through divergent selection is thought to be a major force during the process of adaptive radiations. However, the large sizes and complexity of most radiations such as those of the cichlids in the African Great Lakes make it impossible to infer the exact evolutionary history of any population divergence event. The genus Alcolapia, a small cichlid lineage endemic to Lakes Magadi and Natron in East Africa, exhibits phenotypes similar to some of those found in cichlids of the radiations of the African Great Lakes. The simplicity within Alcolapia makes it an excellent model system to investigate ecological diversification and speciation. We used an integrated approach including population genomics based on RAD‐seq data, geometric morphometrics and stable isotope analyses to investigate the eco‐morphological diversification of tilapia in Lake Magadi and its satellite lake Little Magadi. Additionally, we reconstructed the demographic history of the species using coalescent simulations based on the joint site frequency spectrum. The population in Little Magadi has a characteristically upturned mouth—possibly an adaptation to feeding on prey from the water surface. Eco‐morphological differences between populations within Lake Magadi are more subtle, but are consistent with known ecological differences between its lagoons such as high concentrations of nitrogen attributable to extensive guano deposits in Rest of Magadi relative to Fish Springs Lagoon. All populations diverged simultaneously only about 1100 generations ago. Differences in levels of gene flow between populations and the effective population sizes have likely resulted in the inferred heterogeneous patterns of genome‐wide differentiation.  相似文献   

8.
Genomewide markers enable us to study genetic differentiation within a species and the factors underlying it at a much higher resolution than before, which advances our understanding of adaptation in organisms. We investigated genomic divergence in Metrosideros polymorpha, a woody species that occupies a wide range of ecological habitats across the Hawaiian Islands and shows remarkable phenotypic variation. Using 1659 single nucleotide polymorphism (SNP) markers annotated with the genome assembly, we examined the population genetic structure and demographic history of nine populations across five elevations and two ages of substrates on Mauna Loa, the island of Hawaii. The nine populations were differentiated into two genetic clusters distributed on the lower and higher elevations and were largely admixed on the middle elevation. Demographic modelling revealed that the two genetic clusters have been maintained in the face of gene flow, and the effective population size of the high‐altitude cluster was much smaller. A FST‐based outlier search among the 1659 SNPs revealed that 34 SNPs (2.05%) were likely to be under divergent selection and the allele frequencies of 21 of them were associated with environmental changes along elevations, such as temperature and precipitation. This study shows a genomic mosaic of M. polymorpha, in which contrasting divergence patterns were found. While most genomic polymorphisms were shared among populations, a small fraction of the genome was significantly differentiated between populations in diverse environments and could be responsible for the dramatic adaptation to a wide range of environments.  相似文献   

9.
Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (= 116 231 SNPs) to describe signatures of fine‐scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine‐scale adaptation.  相似文献   

10.
Identifying patterns in genetic structure and the genetic basis of ecological adaptation is a core goal of evolutionary biology and can inform the management and conservation of species that are vulnerable to population declines exacerbated by climate change. We used reduced‐representation genomic sequencing methods to gain a better understanding of genetic structure among and within populations of Lake Tanganyika's two sardine species, Limnothrissa miodon and Stolothrissa tanganicae. Samples of these ecologically and economically important species were collected across the length of Lake Tanganyika, as well as from nearby Lake Kivu, where L. miodon was introduced in 1959. Our results reveal differentiation within both S. tanganicae and L. miodon that is not explained by geography. Instead, this genetic differentiation is due to the presence of large sex‐specific regions in the genomes of both species, but involving different polymorphic sites in each species. Our results therefore indicate rapidly evolving XY sex determination in the two species. Additionally, we found evidence of a large chromosomal rearrangement in L. miodon, creating two homokaryotypes and one heterokaryotype. We found all karyotypes throughout Lake Tanganyika, but the frequencies vary along a north–south gradient and differ substantially in the introduced Lake Kivu population. We do not find evidence for significant isolation by distance, even over the hundreds of kilometres covered by our sampling, but we do find shallow population structure.  相似文献   

11.
High‐throughput DNA sequencing facilitates the analysis of large portions of the genome in nonmodel organisms, ensuring high accuracy of population genetic parameters. However, empirical studies evaluating the appropriate sample size for these kinds of studies are still scarce. In this study, we use double‐digest restriction‐associated DNA sequencing (ddRADseq) to recover thousands of single nucleotide polymorphisms (SNPs) for two physically isolated populations of Amphirrhox longifolia (Violaceae), a nonmodel plant species for which no reference genome is available. We used resampling techniques to construct simulated populations with a random subset of individuals and SNPs to determine how many individuals and biallelic markers should be sampled for accurate estimates of intra‐ and interpopulation genetic diversity. We identified 3646 and 4900 polymorphic SNPs for the two populations of A. longifolia, respectively. Our simulations show that, overall, a sample size greater than eight individuals has little impact on estimates of genetic diversity within A. longifolia populations, when 1000 SNPs or higher are used. Our results also show that even at a very small sample size (i.e. two individuals), accurate estimates of FST can be obtained with a large number of SNPs (≥1500). These results highlight the potential of high‐throughput genomic sequencing approaches to address questions related to evolutionary biology in nonmodel organisms. Furthermore, our findings also provide insights into the optimization of sampling strategies in the era of population genomics.  相似文献   

12.
Despite recent progress, we still know relatively little about the genetic architecture that underlies adaptation to divergent environments. Determining whether the genetic architecture of phenotypic adaptation follows any predictable patterns requires data from a wide variety of species. However, in many organisms, genetic studies are hindered by the inability to perform genetic crosses in the laboratory or by long generation times. Admixture mapping is an approach that circumvents these issues by taking advantage of hybridization that occurs between populations or species in the wild. Here, we demonstrate the utility of admixture mapping in a naturally occurring hybrid population of threespine sticklebacks (Gasterosteus aculeatus) from Enos Lake, British Columbia. Until recently, this lake contained two species of sticklebacks adapted to divergent habitats within the lake. This benthic–limnetic species pair diverged in a number of phenotypes, including male nuptial coloration and body shape, which were previously shown to contribute to reproductive isolation between them. However, recent ecological disturbance has contributed to extensive hybridization between the species, and there is now a single, admixed population within Enos Lake. We collected over 500 males from Enos Lake and found that most had intermediate nuptial colour and body shape. By genotyping males with nuptial colour at the two extremes of the phenotypic distribution, we identified seven genomic regions on three chromosomes associated with divergence in male nuptial colour. These genomic regions are also associated with variation in body shape, suggesting that tight linkage and/or pleiotropy facilitated adaptation to divergent environments in benthic–limnetic species pairs.  相似文献   

13.
Adaptive radiation is recognized by a rapid burst of phenotypic, ecological and species diversification. However, it is unknown whether different species within an adaptive radiation evolve reproductive isolation at different rates. We compared patterns of genetic differentiation between nascent species within an adaptive radiation of Cyprinodon pupfishes using genotyping by sequencing. Similar to classic adaptive radiations, this clade exhibits rapid morphological diversification rates and two species are novel trophic specialists, a scale‐eater and hard‐shelled prey specialist (durophage), yet the radiation is <10 000 years old. Both specialists and an abundant generalist species all coexist in the benthic zone of lakes on San Salvador Island, Bahamas. Based on 13 912 single‐nucleotide polymorphisms (SNPs), we found consistent differences in genetic differentiation between each specialist species and the generalist across seven lakes. The scale‐eater showed the greatest genetic differentiation and clustered by species across lakes, whereas durophage populations often clustered with sympatric generalist populations, consistent with parallel speciation across lakes. However, we found strong evidence of admixture between durophage populations in different lakes, supporting a single origin of this species and genome‐wide introgression with sympatric generalist populations. We conclude that the scale‐eater is further along the speciation‐with‐gene‐flow continuum than the durophage and suggest that different adaptive landscapes underlying these two niche environments drive variable progress towards speciation within the same habitat. Our previous measurements of fitness surfaces in these lakes support this conclusion: the scale‐eating fitness peak may be more distant than the durophage peak on the complex adaptive landscape driving adaptive radiation.  相似文献   

14.
Intraspecific differentiation in response to divergent natural selection between environments is a common phenomenon in some northern freshwater fishes, especially salmonids and stickleback. Understanding why these taxa diversify and undergo adaptive radiations while most other fish species in the same environments do not, remains an open question. The possibility for intraspecific diversification has rarely been evaluated for most northern freshwater fish species. Here, we assess the potential for intraspecific differentiation between and within lake populations of roach (Rutilus rutilus)—a widespread and abundant cyprinid species—in lakes in which salmonids have evolved endemic adaptive radiations. Based on more than 3,000 polymorphic RADseq markers, we detected low but significant genetic differentiation between roach populations of two ultraoligotrophic lakes and between these and populations from other lakes. This, together with differentiation in head morphology and stable isotope signatures, suggests evolutionary and ecological differentiation among some of our studied populations. Next, we tested for intralacustrine diversification of roach within Lake Brienz, the most pristine lake surveyed in this study. We found significant phenotypic evidence for ecological intralacustrine differentiation between roach caught over a muddy substrate and those caught over a rocky substrate. However, evidence for intralacustrine genetic differentiation is at best subtle and phenotypic changes may therefore be mostly plastic. Overall, our findings suggest roach can differ between ecologically distinct lakes, but the extent of intralacustrine ecological differentiation is weak, which contrasts with the strong differentiation among endemic species of whitefish in the same lakes.  相似文献   

15.
Disentangling the processes and mechanisms underlying adaptive diversification is facilitated by the comparative study of replicate population pairs that have diverged along a similar environmental gradient. Such a setting is realized in a cichlid fish from southern Lake Tanganyika, Astatotilapia burtoni, which occurs within the lake proper as well as in various affluent rivers. Previously, we demonstrated that independent lake and stream populations show similar adaptations to the two habitat regimes. However, little is known about the evolutionary and demographic history of the A. burtoni populations in question and the patterns of genome divergence among them. Here, we apply restriction site‐associated DNA sequencing (RADseq) to examine the evolutionary history, the population structure and genomic differentiation of lake and stream populations in A. burtoni. A phylogenetic reconstruction based on genome‐wide molecular data largely resolved the evolutionary relationships among populations, allowing us to re‐evaluate the independence of replicate lake–stream population clusters. Further, we detected a strong pattern of isolation by distance, with baseline genomic divergence increasing with geographic distance and decreasing with the level of gene flow between lake and stream populations. Genome divergence patterns were heterogeneous and inconsistent among lake‐stream population clusters, which is explained by differences in divergence times, levels of gene flow and local selection regimes. In line with the latter, we only detected consistent outlier loci when the most divergent lake–stream population pair was excluded. Several of the thus identified candidate genes have inferred functions in immune and neuronal systems and show differences in gene expression between lake and stream populations.  相似文献   

16.
17.
Understanding the evolutionary consequences of human‐mediated introductions of domesticated strains into the wild and their subsequent admixture with natural populations is of major concern in conservation biology. However, the genomic impacts of stocking from distinct sources (locally derived vs. divergent) on the genetic integrity of wild populations remain poorly understood. We designed an approach based on estimating local ancestry along individual chromosomes to provide a detailed picture of genomic admixture in supplemented populations. We used this approach to document admixture consequences in the brown trout Salmo trutta, for which decades of stocking practices have profoundly impacted the genetic make‐up of wild populations. In southern France, small local Mediterranean populations have been subject to successive introductions of domestic strains derived from the Atlantic and Mediterranean lineages. To address the impact of stocking, we evaluate the extent of admixture from both domestic strains within populations, using 75,684 mapped SNPs obtained from double‐digested restriction site‐associated DNA sequencing. Then, the chromosomal ancestry profiles of admixed individuals reveal a wider diversity of hybrid and introgressed genotypes than estimated using classical methods for inferring ancestry and hybrid pedigrees. In addition, the length distribution of introgressed tracts retained different timings of introgression between the two domestic strains. We finally reveal opposite consequences of admixture on the level of polymorphism of the recipient populations between domestic strains. Our study illustrates the potential of using the information contained in the genomic mosaic of ancestry tracts in combination with classical methods based on allele frequencies for analysing multiple‐way admixture with population genomic data.  相似文献   

18.
Variation in bumble bee color patterns is well‐documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red‐banded to black‐banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome‐wide differentiation between red‐ and black‐banded forms. Here, we instead focus on the closely related black‐banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus. We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase‐like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.  相似文献   

19.
20.
Adaptive phenotypic plasticity and fixed genotypic differences have long been considered opposing strategies in adaptation. More recently, these mechanisms have been proposed to act complementarily and under certain conditions jointly facilitate evolution, speciation, and even adaptive radiations. Here, we investigate the relative contributions of adaptive phenotypic plasticity vs. local adaptation to fitness, using an emerging model system to study early phases of adaptive divergence, the generalist cichlid fish species Astatotilapia burtoni. We tested direct fitness consequences of morphological divergence between lake and river populations in nature by performing two transplant experiments in Lake Tanganyika. In the first experiment, we used wild‐caught juvenile lake and river individuals, while in the second experiment, we used F1 crosses between lake and river fish bred in a common garden setup. By tracking the survival and growth of translocated individuals in enclosures in the lake over several weeks, we revealed local adaptation evidenced by faster growth of the wild‐caught resident population in the first experiment. On the other hand, we did not find difference in growth between different types of F1 crosses in the second experiment, suggesting a substantial contribution of adaptive phenotypic plasticity to increased immigrant fitness. Our findings highlight the value of formally comparing fitness of wild‐caught and common garden‐reared individuals and emphasize the necessity of considering adaptive phenotypic plasticity in the study of adaptive divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号