首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growing pig oocytes (≤90 μm in diameter) are unable to resume meiosis in vitro. The objective of our present experiments has been to identify the reasons for meiotic competence in these cells. By comparing histone H1 kinase activity in growing and fully grown oocytes we demonstrate that incompetence is associated with an inability to activate H1 kinase in growing oocytes. Immunoblotting was used to determine whether this kinase inactivity resulted from a lack of either p34cdc2 protein or B-type cyclin. The results established that each of these cell cycle molecules are present in comparable amounts in both growing and fully grown oocytes. In the third series of studies experiments were carried out in an attempt to induce p34cdc2 activation during growth. Treatment with okadaic acid, an inhibitor of phosphatase 1 and 2A known to stimulate and accelerate the transition into M-phase of the meiotic cycle in a number of different species, was able to induce p34cdc2 kinase activity and facilitated the G2- to M-phase in growing oocytes. We conclude that although growing oocytes in pigs have sufficient key cell cycle components for the G2 to M transition, they remain incapable of converting these components to active maturation-promoting factor (MPF) until growth is virtually completed. Inhibition of phosphatase 1 or 2A induces the formation of active MPF during growth by an as yet unidentified pathway. © 1994 Wiley-Liss, Inc.  相似文献   

2.
At the G2/M transition of the cell cycle, the cdc25c phosphatase dephosphorylates inhibitory residues of cdc2, and cyclin-B–cdc2 kinase (MPF) is activated. Phosphorylation of cyclin B1 induces its nuclear accumulation, and, since cdc25c is also believed to accumulate and activate shortly before G2/M in the nucleus, it has been proposed that this induces cyclin-B1–cdc2 kinase activation. We demonstrate that cyclin B1 phosphorylation has another essential function in vivo: it is required for cdc25c and MPF activation, which does not require nuclear accumulation of cyclin B1, and occurs in the cytoplasm.  相似文献   

3.
The mammalian homologue of the cdc2 gene of the fission yeast Schizosaccharomyces pombe encodes a p34cdc2 cyclin-dependent kinase that regulates the cell cycle of a wide variety of cell types. Resting murine T lymphocytes contained no detectable p34cdc2 protein, histone kinase activity, or specific mRNA for the cdc2 gene. Activation of the T cells by immobilized anti-CD3 resulted in the expression of specific mRNA late in the G1 phase of the cell cycle, and p34cdc2 protein was detectable at or near G1/S. At this point in the cell cycle, the protein was phosphorylated at tyrosine and displayed no H1 histone kinase activity. As the cells progressed through the cycle, the amount of specific mRNA and p34cdc2 increased, and H1 histone kinase activity was detectable when the cells were blocked at G2/M by nocodazole. The activation of T cells by phorbol dibutyrate induced the expression of IL-2R but failed to induce the synthesis of IL-2 or the expression of cdc2-specific mRNA. Under these conditions, the activated cells failed to enter the S phase of the cell cycle. Because the presence of IL-2 added exogenously during activation by phorbol dibutyrate resulted in the expression of cdc2-specific mRNA and progression through the cell cycle, either IL-2 or the interaction with IL-2R may be involved in the expression of cdc2 and regulation of the G1/S transition.  相似文献   

4.
In excised pith parenchyma from Nicotiana tabacum L. cv. Wisconsin Havana 38, auxin (naphthalene-1-acetic acid) together with cytokinin (6-benzylaminopurine) induced a greater than 40-fold increase in a p34cdc2-like protein, recoverable in the p13suc1-binding fraction, that had high H1 histone kinase activity, but enzyme induced without cytokinin was inactive. In suspension-cultured N. plumbaginifolia Viv., cytokinin (kinetin) was stringently required only in late G2 phase of the cell division cycle (cdc) and cells lacking kinetin arrested in G2 phase with inactive p34cdc2-like H1 histone kinase. Control of the Cdc2 kinase by inhibitory tyrosine phosphorylation was indicated by high phosphotyrosine in the inactive enzyme of arrested pith and suspension cells. Yeast cdc25 phosphatase, which is specific for removal of phosphate from tyrosine at the active site of p34cdc2 enzyme, was expressed in bacteria and caused extensive in-vitro activation of p13suc1-purified enzyme from pith and suspension cells cultured without cytokinin. Cytokinin stimulated the removal of phosphate, activation of the enzyme and rapid synchronous entry into mitosis. Therefore, plants can control cell division by tyrosine phosphorylation of Cdc2 but differ from somatic animal cells in coupling this mitotic control to hormonal signals.Abbreviations BAP 6-benzylaminopurine - BrdUrd 5-bromo-2-deoxyuridine - cdc cell division cycle - Cdc25 cdc phospho-protein phosphatase - CKI cyclin dependent kinase inhibitor - 2,4-D 2,4-dichlorophenoxyacetic acid - DAPI 4,6 diamidino-2-phenylindole - GST-cdc25 glutathione sulfur transferase-truncated cdc25 fusion - MS Murashige and Skoog (1962) - NAA naphthalene-1-acetic acid - p34cdc2 34-kDa product of the cdc2 gene  相似文献   

5.
The plant cell cycle   总被引:1,自引:0,他引:1  
The first aim of this paper is to review recent progress in identifying genes in plants homologous to cell division cycle (cdc) genes of fission yeast. In the latter, cdc genes are well-characterised. Arguably, most is known about cdc2 which encodes a 34 kDa protein kinase (p34cdc2) that functions at the G2-M and G1-S transition points of the cell cycle. At G2-M, the p34cdc2 protein kinase is regulated by a number of gene products that function in independent regulatory pathways. The cdc2 kinase is switched on by a phosphatase encoded by cdc25, and switched off by a protein kinase encoded by weel. p34 Must also bind with a cyclin protein to form maturation promoting factor before exhibiting protein kinase activity. In plants, homologues to p34cdc2 have been identified in pea, wheat, Arabidopsis, alfalfa, maize and Chlamydomonas. They all exhibit the PSTAIRE motif, an absolutely conserved amino acid sequence in all functional homologues sequenced so far. As in animals, some plant species contain more than one cdc2 protein kinase gene. but in contrast to animals where one functions at G2-M and the other (CDK2 in humans and Egl in Xenopus) at G1-S, it is still unclear whether there are functional differences between the plant p34cdc2 protein kinases. Again, whereas in animals cyclins are well characterised on the basis of sequence analysis, into class A, class B (G2-M) and CLN (G1 cyclins), cyclins isolated from several plant species cannot be so clearly characterised. The differences between plant and animal homologues to p34cdc2 and cyclins raises the possibility that some of the regulatory controls of the plant genes may be different from those of their animal counterparts. The second aim of the paper is to review how planes of cell division and cell size are regulated at the molecular level. We focus on reports showing that p34cdc2 binds to the preprophase band (ppb) in late G2 of the cell cycle. The binding of p34cdc2 to ppbs may be important in regulating changes in directional growth but, more importantly, there is a requirement to understand what controls the positioning of ppbs. Thus, we highlight work resolving proteins such as the microtubule associated proteins (MAPs) and those mitogen activated protein kinases (MAP kinases), which act on, or bind to, mitotic microtubules. Plant homologues to MAP kinases have been identified in alfalfa. Finally, some consideration is given to cell size at division and how alterations in cell size can alter plant development. Transgenic tobacco plants expressing the fission yeast gene, cdc25, exhibited various perturbations of development and a reduced cell size at division. Hence, cdc25 affected the cell cycle (and as a consequence, cell size at division) and cdc25 expression was correlated with various alterations to development including precocious flowering and altered floral morphogenesis. Our view is that the cell cycle is a growth cycle in which a cell achieves an optimal size for division and that this size control has an important bearing on differentiation and development. Understanding how cell size is controlled, and how plant cdc genes are regulated, will be essential keys to ‘the cell cycle locks’, which when ‘opened’, will provide further clues about how the cell cycle is linked to plant development.  相似文献   

6.
Reversible phosphorylation of proteins by kinases and phosphatases plays a key regulatory role in several eukaryotic cellular functions including the control of the division cycle. Increasing numbers of sequence and biochemical data show the involvement of cyclin-dependent kinases (CDKs) and cyclins in regulation of the cell cycle progression in higher plants. The complexity represented by different types of CDKs and cyclins in a single species such as alfalfa, indicates that multicomponent regulatory pathways control G2/M transition. A set of cdc2-related genes (cdc2Ms A, B, D and F) was expressed in G2 and M cells. Phosphorylation assays also revealed that at least three kinase complexes (Cdc2Ms A/B, D and F) were successively active in G2/M cells after synchronization. Interaction between alfalfa mitotic cyclin (Medsa;CycB2;1) and a kinase partner has been reported previously. The present yeast two-hybrid analyses showed differential interaction between defined D-type cyclins and Cdc2Ms kinases functioning in G2/M phases. Localization of Cdc2Ms F kinase to the preprophase band (PPB), the perinuclear ring in early prophase, the mitotic spindle and the phragmoplast indicated a pivotal role for this kinase in mitotic plant cells. So far limited research efforts have been devoted to the functions of phosphatases in the control of plant cell division. A homologue of dual phosphatase, cdc25, has not been cloned yet from alfalfa; however tyrosine phosphorylation was indicated in the case of Cdc2Ms A kinase and the p13suc1-bound kinase activity was increased by treatment of this complex with recombinant Drosophila Cdc25. The potential role of serine/threonine phosphatases can be concluded from inhibitor studies based on okadaic acid or endothall. Endothall elevated the kinase activity of p13suc1-bound fractions in G2-phase alfalfa cells. These biochemical data are in accordance with observed cytological abnormalities. The present overview with selected original data outlines a conclusion that emphasizes the complexity of G2/M regulatory events in flowering plants.  相似文献   

7.
I Hoffmann  G Draetta    E Karsenti 《The EMBO journal》1994,13(18):4302-4310
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.  相似文献   

8.
9.
The aim of the present study was to investigate the effect of HIF1α on Foxp3 expression in CD4+CD25? T lymphocytes. CD4+CD25? T lymphocytes were sorted from PBMC using a CD4+CD25+ regulatory T cell isolation kit. Lentivirus containing lentiviral vector that overexpressed HIF1α (HIF‐lenti) and those containing empty expression vector (control‐lenti) were produced. Meanwhile, lentivirus that contained lentiviral vector that suppressed HIF1α expression (siHIF‐lenti) and those containing control vector (sicontrol‐lenti) were also generated. The sorted CD4+CD25? T lymphocytes were infected with HIF‐lenti, control‐lenti, siHIF‐lenti, and sicontrol‐lenti, respectively. Approximately 72 hr after transduction, real‐time PCR and Western blot were carried out to analyze the RNA and protein expression level of HIF1α and Foxp3. CD4+CD25? T lymphocytes cultured under 21% O2, 5% CO2 (normoxia) and 1% O2, 5% CO2 (hypoxia) were used as control. Our results showed that overexpression of HIF1α increased both mRNA and protein expression of Foxp3 and, meanwhile, suppression of HIF1α expression by RNAi could reverse high Foxp3 expression in CD4+CD25? T lymphocytes caused by hypoxic culture. These results suggested that hypoxia could stimulate Foxp3 expression by increasing HIF1α expression in CD4+ T lymphocytes which may promote CD4+ T lymphocytes to convert to Treg.
  相似文献   

10.
11.
In uninfected cells the G2/M transition is regulated by cyclin kinase complex containing cdc2 and, initially, cyclin A, followed by cyclin B. cdc2 is downregulated through phosphorylation by wee-1 and myt-1 and upregulated by cdc-25C phosphatase. We have examined the accumulation and activities of these proteins in cells infected with wild type and mutants of herpes simplex virus 1. The results were as follows. (i) Cyclin A and B levels were reduced beginning 4 h after infection and were undetectable at 12 to 16 h after infection. (ii) cdc2 protein also decreased in amount but was detectable at all times after infection. In addition, a fraction of cdc2 protein from infected cells exhibited altered electrophoretic mobility in denaturing gels. (iii) The levels of cdk7 or myt-1 proteins remained relatively constant throughout infection, whereas the level of wee-1 was significantly decreased. (iv) cdc-25C formed novel bands characterized by slower electrophoretic mobility that disappeared after treatment with phosphatase. In addition, one phosphatase-sensitive band reacted with MPM-2 antibody that recognizes a phosphoepitope phosphorylated exclusively in M phase. (v) cdc2 accumulating in infected cells exhibited kinase activity. The activity of cdc2 was higher in infected cell lysates than those of corresponding proteins present in lysates of mock-infected cells even though cyclins A and B were not detectable in lysates of infected cells. (vi) The decrease in the levels of cyclins A and B, the increase in activity of cdc2, and the hyperphosphorylation of cdc-25C were mediated by UL13 and α22/US1.5 gene products. In light of its normal functions, the activated cdc2 kinase may play a role in the changes in the morphology of the infected cell. These results are consistent with the accruing evidence that herpes simplex virus scavenges the cell for useful cell cycle proteins and subverts them for its own use.  相似文献   

12.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

13.
Summary— Several studies have shown that kinases and phosphatases can interact with the centrosome during interphase and mitosis suggesting that centrosomal components might be the targets of these enzymes. The association of the cAMP-dependent protein kinase type II and the mitotic kinase p34cdc2 with centrosomes from human lymphoblast cells has previously been shown (Keryer et al, 1993, Exp Cell Res 204, 230–240; Bailly et al, 1989, EMBO J 8, 3985–3995). In this paper we demonstrate that isolated centrosomes are able to phosphorylate a few number of centrosomal proteins (Mr 230–220000; 135000 and 50000) and also H1 histone. The phosphorylation of H1-histone is cell cycle dependent and modulated by phosphatases. The use of kinase and phosphatase inhibitors and the addition of the catalytic subunit of cAMP-dependent kinase or of cyclinB-p34cdc2 kinase showed that both kinases phosphorylate the same centrosomal substrates. In addition two centrosomal proteins (Mr 100000 and 37000) were phosphorylated only by p34cdc2 kinase. Although the low amount of centrosomal proteins precluded a full characterization of these substrates we discuss the identity of the major centrosomal phosphoproteins by comparison with proteins known to associate with microtubule-organizing centres or mitotic spindles. Our results raise also the intriguing possibility that the cAMP-dependent protein kinase could be regulated by the mitotic kinase at the entry of mitosis.  相似文献   

14.
A family of proteins homologous to the cdc25 gene product of the fission yeast bear specific protein tyrosine phosphatase activity involved in the activation of the p34cdc2-cyclin B kinase. Using affinity-purified antibodies raised against a synthetic peptide corresponding to the catalytic site of the cdc25 phosphatase, we show that cdc25 protein is constitutively expressed throughout the cell cycle of nontransformed mammalian fibroblasts and does not undergo major changes in protein level. By indirect immunofluorescence, cdc25 protein is found essentially localized in the nucleus throughout interphase and during early prophase. Just before the complete nuclear envelope breakdown at the prophase-prometaphase boundary, cdc25 proteins are redistributed throughout the cytoplasm. During metaphase and anaphase, cdc25 staining remains distributed throughout the cell and excludes the condensed chromosomes. The nuclear locale reappears during telophase. In light of the recent data describing the cytoplasmic localization of cyclin B protein (Pines, J., and T. Hunter. 1991. J. Cell Biol. 115:1-17), the data presented here suggest that separation in two distinct cellular compartments of the cdc25 phosphatase and its substrate p34cdc2-cyclin B may be of importance in the regulation of the cdc2 kinase activity.  相似文献   

15.
The p34cdc2 protein kinase plays a key role in the control of the mitotic cell cycle of fission yeast, being required for both entry into S-phase and for entry into mitosis in the mitotic cell cycle, as well as for the initiation of the second meiotic nuclear division. In recent years, structural and functional homologues of p34cdc2, as well as several of the proteins that interact with and regulate p34cdc2 function in fission yeast, have been identified in a wide range of higher eukaryotic cell types, suggesting that the control mechanisms uncovered in this simple eukaryote are likely to be well conserved across evolution. Here we describe the construction and characterisation of a fission yeast strain in which the endogenous p34cdc2 protein is entirely absent and is replaced by its human functional homologue p34CDC2, We have used this strain to analyse aspects of the function of the human p34CDC2 protein genetically. We show that the function of the human p34CDC2 protein in fission yeast cells is dependent upon the action of the protein tyrosine phosphatase p80cdc25 that it responds to altered levels of both the mitotic inhibitor p1072331 and the p34cdc2-binding protein p13suc1, and is lethal in combination with the mutant B-type cyclin p56cdc13-117. In addition, we demonstrate that the human p34CDC2 protein is proficient for fission yeast meiosis, and examine the behaviour of two mutant p34CDC2 proteins in fission yeast.  相似文献   

16.
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2   总被引:116,自引:0,他引:116  
cdc25 controls the activity of the cyclin-p34cdc2 complex by regulating the state of tyrosine phosphorylation of p34cdc2. Drosophila cdc25 protein from two different expression systems activates inactive cyclin-p34cdc2 and induces M phase in Xenopus oocytes and egg extracts. We find that the cdc25 sequence shows weak but significant homology to a phylogenetically diverse group of protein tyrosine phosphatases. cdc25 itself is a very specific protein tyrosine phosphatase. Bacterially expressed cdc25 directly dephosphorylates bacterially expressed p34cdc2 on Tyr-15 in a minimal system devoid of eukaryotic cell components, but does not dephosphorylate other tyrosine-phosphorylated proteins at appreciable rates. In addition, mutations in the putative catalytic site abolish the in vivo activity of cdc25 and its phosphatase activity in vitro. Therefore, cdc25 is a specific protein phosphatase that dephosphorylates tyrosine and possibly threonine residues on p34cdc2 and regulates MPF activation.  相似文献   

17.
Cyclin-dependent kinases (cdks) are a family of proteins whose function plays a critical role in cell cycle traverse. Transforming growth factor-β1 (TGF-β1) is a potent growth inhibitor of epithelial cells. Since cdks have been suggested as possible biochemical markers for TGF-β growth inhibition, we investigated the effect of TGF-β1 on cdc2 and cdk2 in a normal mouse mammary epithelial cell line (MME) and a TGF-β-resistant MME cell line (BG18.2). TGF-β1 decreases newly synthesized cdc2 protein levels within 6 h after addition. Coincident with this decrease in newly synthesized cdc2 protein was a marked reduction in its ability to phosphorylate histone H1. This decrease in kinase activity is not due to a change in steady-state levels of cdc2 protein, since mRNA and total protein levels of cdc2 are not reduced until 12 h after TGF-β1 addition. This suggests that the kinase activity of cdc2 is dependent on newly synthesized cdc2 protien. Moreover, the protein synthesis of another cyclin-dependent kinase, cdk2, is not effected by TGF-β1 addition, but its kinase activity is substantially reduced. Thus, it appears that TGF-β decreases the kinase activity of both cdc2 and cdk2 by distinct mechanisms.  相似文献   

18.
Summary The p34cdc2 protein kinase plays a central role in the regulation of the eukaryotic cell cycle, being required both in late G1 for the commitment to S-phase and in late G2 for the initiation of mitosis. p34cdc2 also determines the precise timing of entry into mitosis in fission yeast, where a number of gene produts that regulate p34cdc2 activity have been identified and characterised. To investigate further the mitotic role of p34cdc2 in this organism we have isolated new cold-sensitive p34cdc2 mutants. These are defective only in their G2 function and are extragenic suppressors of the lethal premature entry into mitosis brought about by mutating the mitotic inhibitor p107wee1 and overproducing the mitotic activator p80cdc25. One of the mutant proteins p34cdc2-E8 is only functional in the absence of p107wee1, and all the mutant strains have reduced histone H1 kinase activity in vitro. Each mutant allele has been cloned and sequenced, and the lesions responsible for the cold-sensitive phenotypes identified. All the mutations were found to map to regions that are conserved between the fission yeast p34cdc2 and functional homologues from higher eukaryotes.  相似文献   

19.
Summary Immunofluorescence microscopy with a monoclonal antibody raised against the PSTAIR sequence, which corresponds to a peptide conserved in the p 34cdc2 protein kinase throughout the phylogenetic scale including higher plants, was used to study the intracellular localization of p 34cdc2 during the cell cycle in onion root tip cells. Although p 34cdc2 was evenly distributed in the cytoplasm throughout the cell cycle, a more intense staining was observed in the cortical region, where the preprophase band of microtubules (MTs) was located. Double staining with the PSTAIR and plant tubulin antibodies showed that the width of p 34cdc2 band was narrower than that of MT band. These data raise the interesting question regarding the possible role of p 34cdc2 protein kinase in determining the division site in plant cells.  相似文献   

20.
The cdc25 tyrosine phosphatase is known to activate cdc2 kinase in the G2/M transition by dephosphorylation of tyrosine 15. To determine how entry into M-phase in eukaryotic cells is controlled, we have investigated the regulation of the cdc25 protein in Xenopus eggs and oocytes. Two closely related Xenopus cdc25 genes have been cloned and sequenced and specific antibodies generated. The cdc25 phosphatase activity oscillates in both meiotic and mitotic cell cycles, being low in interphase and high in M-phase. Increased activity of cdc25 at M-phase is accompanied by increased phosphorylation that retards electrophoretic mobility in gels from 76 to 92 kDa. Treatment of cdc25 with either phosphatase 1 or phosphatase 2A removes phosphate from cdc25, reverses the mobility shift, and decreases its ability to activate cdc2 kinase. Furthermore, the addition of okadaic acid to egg extracts arrested in S-phase by aphidicolin causes phosphorylation and activation of the cdc25 protein before cyclin B/cdc2 kinase activation. These results demonstrate that the activity of the cdc25 phosphatase at the G2/M transition is directly regulated through changes in its phosphorylation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号