首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glyoxalase II (S-(2-hydroxyacyl)glutathione hydrolase, EC 3.1.2.6), which has been regarded as a cytosolic enzyme, was also found in rat liver mitochondria. The mitochondrial fraction contained about 10-15% of the total glyoxalase II activity in liver. The actual existence of the specific mitochondrial glyoxalase II was verified by showing that all of the activity of the crude mitochondrial pellet was still present in purified mitochondria prepared in a Ficoll gradient. Subfractionation of the mitochondria by digitonin treatment showed that 56% of the activity resided in the mitochondrial matrix and 19% in the intermembrane space. Partial purification of the enzyme (420-fold) was also achieved. Statistically significant differences were found in the substrate specificities of the mitochondrial and the cytosolic glyoxalase II. Electrophoresis and isoelectric focusing of either the crude mitochondrial extract or of the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms with the respective pI values of 8.1, 7.5, 7.0, 6.85 and 6.6. Three of these forms (pI values 7.0-6.6) were exclusively mitochondrial, with no counterpart in the cytosol. The relative molecular mass of the partially purified enzyme, as estimated by Superose 12 gel chromatography, was 21,000. These results give evidence for the presence of mitochondrial glyoxalase II which is different from the cytosolic enzymes in several characteristics.  相似文献   

2.
Bovine liver mitochondria contain about 10% of the total glyoxalase II activity in the homogenate. Electrophoresis and isoelectric focussing of either crude mitochondrial extract or the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms (pl 6.3, 6.7, 7.1, 7.7, and 7.9). Since bovine liver cytosol contains a single form of glyoxalase II (pl 7.5), at least four forms are exclusively mitochondrial with no counterpart in the cytosol. The relative molecular mass of mitochondrial glyoxalase II is about 23-24 kDa, similar to the cytosolic form. The kinetic constants obtained using S-D-lactoyl, S-acetyl-, S-acetoacetyl-, and S-succinyl-glutathione as substrates are similar to those reported for glyoxalase II from rat liver mitochondria. S-D-Lactoyl- and S-acetoacetyl-glutathione are the best substrates. S-Acetylglutathione is the poorest substrate with respect to both Vmax and Km values.  相似文献   

3.
Glyoxalase II has been purified from cytosol and mitochondria of spinach leaves. Electrophoresis and isoelectric focussing have resolved cytosolic and mitochondrial glyoxalase II in multiple forms: pl 5.3, 5.8 and 6.2 (cytosol) and pl 4.8 (mitochondria). The enzyme of both localizations is a monomer showing a relative molecular mass of about 26 kDa. The values of kinetic constants using several glutathione thiolesters as substrates, are similar for the enzymes from cytosol and mitochondria. These results extend also to plant the presence in mitochondria of peculiar forms of glyoxalase II, likewise recently demonstrated in mammalians.  相似文献   

4.
Outer mitochondrial membrane was purified from rat liver. Its constituent proteins were analyzed by SDS-polyacrylamide gel electrophoresis and by electrophoretic immunoblotting employing antibodies raised against total outer mitochondrial membrane. Anti-outer mitochondrial membrane antiserum reacted with only one polypeptide (15 kDa) in rough microsomes, whereas no immunological cross-reactivity was observed with other mitochondrial compartments (intermembrane space, inner membrane, or matrix) or with lysosomes or total cytosol. The antiserum was employed to characterize precursors of outer mitochondrial membrane proteins synthesized in vitro in a rabbit reticulocyte cell-free system. One product (a 68 kDa polypeptide designated OMM-68) bound efficiently to mitochondria in vitro but did not interact with either dog pancreas or rat liver microsomes, either co-translationally or post-translationally. OMM-68 was synthesized exclusively by the membrane-free class of polyribosomes. Attachment of precursor OMM-68 to mitochondria was not accompanied by processing of the polypeptide to a different size.  相似文献   

5.
Two NAD-dependent aldehyde dehydrogenase enzymes from rat liver mitochondria have been partially purified and characterized. One enzyme (enzyme I) has molecular weight of 320,000 and has a broad substrate specificity which includes formaldehyde; NADP is not a cofactor for this enzyme. This enzyme has Km values for most aldehydes in the micromolar range. The isoelectric point was found to be 6.06. A second enzyme (enzyme II) has a molecular weight of 67,000, a Km value for most aldehydes in the millimolar range but no activity toward formaldehyde. NADP does serve as a coenzyme, however. The isoelectric point is 6.64 for this enzyme. By utilization of the different substrate properties of these two enzymes it was possible to demonstrate a time-dependent release from digitonin-treated liver mitochondria. The high Km, low molecular weight enzyme (enzyme II) is apparently in the intermembrane space while the low Km, high molecular weight enzyme (enzyme I) is in the mitochondrial matrix and is most likely responsible for oxidation of acetaldehyde formed from ethanol.  相似文献   

6.
Mitochondrial preparations isolated from bovine kidney and brain as well as the liver and the brain of rat show thiamine triphosphatase (ThTPase) activity. The activity was determined from the particles by freezing-thawing suggesting that a soluble enzyme is involved. The liberation patterns of ThTPase and marker enzyme activities from mitochondria under osmotic shock or treatment with increasing Triton X-100 concentrations indicate the presence of ThTPase both in the matrix and intermembrane space. It was found, basing on gel filtration behavior, that the mitochondrial ThTPase has the same molecular mass as specific cytosolic ThTPase (EC 3.6.1.28). The enzymes, however, were clearly distinguishable in Km values, the mitochondrial one showing a higher apparent affinity for substrate. These results imply the existence of ThTPase multiple forms in mammalian cells.  相似文献   

7.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

8.
The mitochondrial pool of GSH (glutathione) is considered the major redox system in maintaining matrix redox homeostasis, preserving sulfhydryl groups of mitochondrial proteins in appropriate redox state, in defending mitochondrial DNA integrity and protecting mitochondrial-derived ROS, and in defending mitochondrial membranes against oxidative damage. Despite its importance in maintaining mitochondrial functionality, GSH is synthesized exclusively in the cytoplasm and must be actively transported into mitochondria. In this work we found that SLG (S-D-lactoylglutathione), an intermediate of the glyoxalase system, can enter the mitochondria and there be hydrolyzed from mitochondrial glyoxalase II enzyme to D-lactate and GSH. To demonstrate SLG transport from cytosol to mitochondria we used radiolabeled compounds and the results showed two different kinetic curves for SLG or GSH substrates, indicating different kinetic transport. Also, the incubation of functionally and intact mitochondria with SLG showed increased GSH levels in normal mitochondria and in artificially uncoupled mitochondria, demonstrating transport not linked to ATP presence. As well mitochondrial-swelling assay confirmed SLG entrance into organelles. Moreover we observed oxygen uptake and generation of membrane potential probably linked to D-lactate oxidation which is a product of SLG hydrolysis. The latter data were confirmed by oxidation of D-lactate in mitochondria evaluated by measuring mitochondrial D-lactate dehydrogenize activity. In this work we also showed the presence of mitochondrial glyoxalase II in inter-membrane space and mitochondrial matrix and we investigated the role of SLG in whole cells. In conclusion, this work showed new alternative sources of GSH supply to the mitochondria by SLG, an intermediate of the glyoxalase system.  相似文献   

9.
The number and the substrate specificities of glutathione thiol esterases of human red blood cells have been investigated by gel electrophoresis and isoelectric focusing and staining methods devised for the location of these enzymes on gels. Several glutathione thiol esterase forms, both unspecific (with respect to the S-acyl group of the substrate) and specific were found. Electrophoresis on both polyacrylamide and agarose gels resolved three enzyme components with apparently similar substrate specificity. Isoelectric focusing in liquid column separated two unspecific thiol esterase components with S-lactoylglutathione (pI = 8.4) and S-propionylglutathione (pI = 8.1) as the best substrates, respectively, and two specific enzymes, S-formylglutathione hydrolase (pI = 5.2) and S-succinylglutathione hydrolase (pI = 9.0). Isoelectric focusing on polyacrylamide gel resolved nine unspecific glutathione thiol esterase bands (between pH values 7.0 and 8.4). Partially purified glyoxalase II (S-2-hydroxyacylglutathione hydrolase, EC 3.1.2.6) from erythrocytes or liver still gave three components on electrophoresis and several activity bands on gel electrofocusing. These results indicate that human red cells contain at least four separate glutathione thiol esterases. Glyoxalase II, one of these enzymes, apparently occurs in multiple forms. These were neither influenced by preptreatment of the samples with neuraminidase or thiols nor were interconvertible during the fractionations.  相似文献   

10.
A simple and rapid procedure is described for purification of carbamyl phosphate synthetase from the matrix fraction of rat liver mitochondria. Antibodies to the enzyme were raised in sheep and purified from antiserum by affinity chromatography on enzyme-bound Sepharose columns. When membrane-free polyribosomes, isolated from a cytosolic fraction of rat liver, were incubated in a messenger-dependent rabbit reticulocyte protein-synthesizing system in the presence of [35S]methionine, the purified antibody precipitated a product of translation representing 0.2% of total trichloroacetic acid-insoluble radioactivity. It demonstrated mobility characteristics in sodium dodecyl sulfate-polyacrylamide gels expected for a polypeptide of molecular mass approximately 5500 daltons larger than the mature mitochondrial form of the enzyme (160,000 daltons). Proteolysis of both the mature and presumptive in vitro precursor forms of the enzyme yielded respective sets of peptide fragments which gave similar patterns upon gel electrophoresis. Excess mitochondrial enzyme effectively competed with the in vitro product for interaction with anti-carbamyl phosphate synthetase antibody.  相似文献   

11.
A comparative study on glyoxalase II from vertebrata   总被引:1,自引:0,他引:1  
S-2-hydroxyacylglutathione hydrolase (glyoxalase II) from the liver of animals belonging to the various vertebrate classes (Oryctolagus cuniculus, Gallus gallus, Python molurus, Rana esculenta, Esox lucius) have been purified from 100,000 g supernatants of liver homogenates, using acetone fractionation and affinity chromatography. Subsequent comparative studies were concerned with some molecular and kinetic properties. Isoelectric focusing gave evidence for a single form of liver glyoxalase II in O. cuniculus, P. molurus and E. lucius, while the enzyme from G. gallus and R. esculenta showed respectively two and three forms with different pI values. All studied enzymes are basic proteins. The relative molecular mass values range from 18,000 to 23,000. The various glyoxalases II do not display markedly different Kn or Ki values. Their stability behavior at different temperatures is also quite similar.  相似文献   

12.
1. Monoamine oxidase from rat and human liver was purified to homogeneity by the criterion of polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. 2. The enzyme activity was extracted from mitochondrial preparations by Triton X-100. The enzyme was purified by (NH4)2SO4 fractionation followed by chromatography on DEAE-cellulose, Sepharose 6B, spheroidal hydroxyapatite, and finally chromatography on diazo-coupled tyramine-Sepharose. 3. Distinct differences occur in the chromatographic behaviour of the two enzymes on both DEAE-cellulose and spheroidal hydroxyapatite. 4. It is unlikely that the purification of the enzymes on tyramine-Sepharose is due to affinity chromatography and reasons for this are discussed. 5. The purified enzymes did not oxidize-5-hydroxytryptamine and the relative activities of the enzymes with benzylamine were increased approx. 1.25-fold compared with the enzyme activities of mitochondrial preparations. 6. Immunotitration of enzyme activity in extracts of mitochondrial preparations from rat liver was carried out with 5-hydroxytryptamine, tyramine and benzylamine. The enzyme activities were completely immunoprecipitated by the same volume of antiserum. Similar results were obtained with the antiserum to the enzyme from human liver.  相似文献   

13.
Following denaturation of mitochondrial proteins by sodium dodecyl sulfate, a [1-14C]pantothenic acid-derived radioactivity proved to be acid precipitable in the outer membrane, the intermembrane space, the inner membrane and in the matrix of rat liver mitochondria, where it had the highest specific radioactivity of 541 +/- 29 cpm/100 micrograms protein. This tightly and/or covalently bound protein radioactivity could be released by incubation in the presence of dithioerythreitol; it was identified as [14C]coenzyme A by its HPLC retention time, its absorption spectrum and its radioactivity. This acid-stable and thiol-labile coenzyme A-binding apparently refers to specific protein binding sites. With the purified, homogeneous mitochondrial matrix enzymes acetyl-CoA acetyltransferase (acetoacetyl-CoA thiolase) (EC 2.3.1.9, acetyl-CoA:acetyl-CoA C-acetyltransferase) and 3-oxoacyl-CoA thiolase (EC 2.3.1.16) coenzyme A was found exclusively, e.g., in the modified, partially-active forms A1 und A2 of acetyl-CoA acetyltransferase and not in the unmodified fully-active enzyme. Thus it is evident that this coenzyme A modification is transient. We suggest that coenzyme A-modification is a signal involved in the assembly or the degradation process of distinct mitochondrial matrix proteins.  相似文献   

14.
Subcellular localization of superoxide dismutase in rat liver.   总被引:6,自引:0,他引:6       下载免费PDF全文
The subcellular localization of superoxide dismutase was investigated in rat liver homogenates. Most of the superoxide dismutase activity is present in the soluble fraction (84%), the rest being associated with mitochondria. No indications for the occurrence of superoxide dismutase in other subcellular structures, particularly in peroxisomes, was found. Mitochondrial activity is not due to adsorption, since the sedimentable activity is essentially latent. Subfractionation of mitochondria by hypo-osmotic shock and sonication shows that half of the mitochondrial superoxide dismutase activity is localized in the intermembrane space, the rest of the enzyme being a component of the matrix space. In non-ionic media the matrix enzyme is, however, adsorbed to the inner membrane, from which it can be desorbed by low (0.04M) concentration of KCl. Superoxide dismutase activity was found in all rat organs investigated. Maximal activity of the enzyme is observed in liver, adrenals and kidney. In adrenals, the highest specific activity is associated with the medulla.  相似文献   

15.
F U Hartl  J Ostermann  B Guiard  W Neupert 《Cell》1987,51(6):1027-1037
We investigated the import and sorting pathways of cytochrome b2 and cytochrome c1, which are functionally located in the intermembrane space of mitochondria. Both proteins are synthesized on cytoplasmic ribosomes as larger precursors and are processed in mitochondria in two steps upon import. The precursors are first translocated across both mitochondrial membranes via contact sites into the matrix. Processing by the matrix peptidase leads to intermediate-sized forms, which are subsequently redirected across the inner membrane. The second proteolytic processing occurs in the intermembrane space. We conclude that the hydrophobic stretches in the presequences of the intermediate-sized forms do not stop transfer across the inner membrane, but rather act as transport signals to direct export from the matrix into the intermembrane space.  相似文献   

16.
The 1,N6-ethenoadenine nucleotide analogs epsilonADP and epsilonATP, contrary to recent findings (1), are shown to be unable to penetrate the inner mitochondrial membrane of intact rat liver mitochondria and can not be used as substrates by the respiratory chain enzymes in oxidative phosphorylation. On the other hand, these analogs are able to participate in transphosphorylation reactions, being good substrates for mitochondrial phosphotransferases located in the intermembrane space, such as nucleosidediphosphate kinase and adenylate kinase.  相似文献   

17.
Purified mitochondrial creatine kinase (Mi-CK) (EC 2.7.3.2) from chicken heart was shown to interact simultaneously with purified inner and outer mitochondrial membranes, thereby creating an intermembrane chondrial membranes, thereby creating an intermembrane were purified from rat liver and thus were fully devoid of Mi-CK. Intermembrane contact formation was demonstrated by measuring the binding of inner membrane vesicles to outer membranes spread at the air-water interface. Mi-CK also mediated intermembrane adhesion when membranes formed with total lipid extracts of both membranes were used, pointing to the role of lipids as potential membrane anchors of Mi-CK in the mitochondrial intermembrane space. Other enzymes of the intermembrane space that (like Mi-CK) are also cationic, as well as cytosolic isoenzymes of creatine kinase, failed to induce contact formation. Thus, of the proteins tested, membrane contact formation was specific for Mi-CK. The two oligomeric forms of Mi-CK (octamer and dimer) differed in their ability to mediate intermembrane adhesion, the octamer being more potent. Highly basic peptides, i.e. poly-L-lysines, were shown to strongly interact with membranes formed with lipid extracts of mitochondrial membranes: they both induced intermembrane binding and fusion. Interestingly, the extent of contact formation mediated by poly-L-lysines was lower than that of octameric Mi-CK. The implications of these findings on the function and localization of Mi-CK and on the structure of the mitochondrial intermembrane compartment are discussed.  相似文献   

18.
Rabbit antiserum was prepared against hexokinase isoenzyme type I which was purified from rat brain mitochondria. The antiserum inhibited the activity of the mitochondrial hexokinase type I as well as that of the cytosolic type I enzyme prepared from rat brain, kidney and spleen. It did not, however, inhibit the activity of type II hexokinase from muscle and spleen or that of the type III enzyme from spleen. The results suggest that all hexokinase type I isoenzymes may have a common antigenic site irrespective of their sources, though their responses to a thiol inhibitor are different.  相似文献   

19.
A procedure is described that yields an apparently homogeneous preparation of the high-Km aldehyde reductase from rat brain. This procedure is also applicable to the purification of this enzyme from rat liver and ox brain. In the latter case, however, the purified preparation could be resolved into two protein bands, both of which had enzyme activity, by polyacrylamide-gel electrophoresis. Since a sample of the ox brain enzyme from an earlier step in the purification procedure only showed the presence of a single band of activity after electrophoresis, this apparent multiplicity probably results from modification of the enzyme, possibly by oxidation, during the final step of the purification. A number of properties of the rat brain enzyme were determined and these were compared with those of the enzyme from rat liver. The two preparations were similar in their stabilities, behaviour during purification, kinetic properties, electrophoretic mobilities and amino acid compositions. Antibodies to the rat liver enzyme cross-reacted with that from brain and the inhibition of both these preparations by the antiserum was similar, further supporting the view that the enzymes from these two sources were closely similar if not identical.  相似文献   

20.
The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase (the enzymes which are located in the mitochondrial inner membrane and matrix respectively) were synthesized as a larger molecular mass than their mature subunits, when rat liver RNA was translated in vitro. These precursor polypeptides were also detected in vivo in ascites hepatoma cells (AH-130 cells). When the 35S-labeled precursor polypeptides were incubated with isolated rat liver mitochondria at 30 degrees C in the presence of an energy-generating system, these two precursors were converted to their mature size and the 35S-labeled mature-size polypeptides associated with mitochondria. Furthermore, these mature-size polypeptides were recovered from their own locations, the inner mitochondrial membrane and the matrix. The precursor of ornithine aminotransferase incubated with rat liver mitochondria at 0 degree C was specifically and tightly bound to the surface of the mitochondria even in the presence of an uncoupler of oxidative phosphorylation. This precursor, bound to the mitochondria, was imported into the matrix when the mitochondria were reisolated and incubated at 30 degrees C in the presence of an energy-generating system, suggesting that a specific receptor may be involved in the binding of the precursor. The processing enzyme for both precursor polypeptides seemed to be located in the mitochondrial matrix and was partially purified from the mitochondria. A metal-chelating agent strongly inhibited the processing enzyme and the inhibition was recovered by the addition of Mn2+ or Co2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号