首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 212 毫秒
1.
Luan RH  Wu FJ  Jen PH  Sun XD 《生理学报》2005,57(2):225-232
以回声定位蝙蝠为模式动物,采用在体动物细胞外单位记录法,研究了后掩蔽效应对下丘神经元声反应的影响。结果显示,部分神经元(38%,12/31)对测试声刺激的反应明显受到掩蔽声的抑制,其后掩蔽效应强弱与掩蔽声和测试声的相对强度差(inter-stimulus level difference,SLD),以及测试声与掩蔽声之间的间隔时间(inter-stimulus onset asynchrony,SOA)有关:当掩蔽声强度升高或测试声强度降低时,后掩蔽效应增强;而SOA的缩短,亦可见后掩蔽效应增强。另外,相当数量的神经元(52%,16/31)对测试声刺激的反应并不受掩蔽声的影响,其中有的神经元只有在特定SLD和SOA时,才表现出后掩蔽效应。而少数下丘神经元(10%,3/31)在特定SLD和SOA时,掩蔽声对测试声反应有易化作用。上述结果表明,部分下丘神经元参与了声认知活动中的后掩蔽形成过程,推测下丘神经元在定型声反应特性中,对掩蔽声诱导的兴奋前抑制性输入与测试声诱导的兴奋性输入之间的时相性动态整合起关键作用。  相似文献   

2.
细胞外记录研究报道听中枢神经元的调制方向选择性和前掩蔽均与神经抑制有关,但由于未能获得抑制性突触输入作用的直接证据,尚存有争议。本研究在20只昆明小鼠(Mus musculus Km)上进行在体细胞内记录,研究了下丘神经元调频声的调制方向选择性或偏好与其前掩蔽之间的关系。共获得93个下丘神经元,对其中37个产生动作电位(action potential,AP)发放且数据完整的神经元做了分析和讨论。在上扫选择性神经元(n=12)频率调谐的高频边存在抑制性突触后电位构成的抑制区,而在下扫选择性神经元(n=8)的低频边存在抑制区,在不具有调制方向选择性的神经元(n=17)频率调谐的高、低频边均未观察到有明显的抑制区,表明这些抑制区是调频声调制方向选择性形成的重要原因。比较上扫和下扫调频声对上、下扫选择性和非选择性神经元的前掩蔽效应,结果显示具有调制方向选择性的神经元,其所偏好方向的调频声对最佳频率(best frequency,BF)声产生的前掩蔽强于非偏好的调频声;而无调制方向选择性神经元,上、下扫调频声的掩蔽效应无差异。以上结果提示,AP后跟随的强抑制性突触后电位可能是调制方向选择性神经元前掩蔽产生的机制。  相似文献   

3.
Li AA  Chen QC  Wu FJ 《生理学报》2006,58(2):141-148
有关听中枢神经元纯音前掩蔽效应的神经表征已进行了大量研究,但是,噪声前掩蔽尤其是间断噪声前掩蔽效应的神经表征却鲜有报道。本研究观察了自由声场条件下,昆明小鼠下丘神经元在持续与间断噪声前掩蔽条件下对纯音探测声的反应。共记录到96个下丘神经元,测量了其中51个神经元在不同声刺激条件下的强度一放电率函数。结果显示,掩蔽声强度分布较广(探测声阈下21dB至阈上19dB之间)。在将近一半的神经元中,间断噪声的前掩蔽效应比持续噪声强(Ⅰ型,45.10%,P〈0.001),但也有少数神经元其间断噪声的掩蔽效应较持续噪声的弱(Ⅲ型,17.65%,P〈0.001),部分神经元无显著性差异(Ⅱ型,37.25%,P〉0.05)。无论Ⅰ型还是Ⅲ型神经元,持续噪声和间断噪声均在探测声强度较低时产生较强的抑制效应,随着探测声强度的升高,抑制效应逐渐降低(P〈0.001);同时,持续噪声和间断噪声之间前掩蔽效应差异亦不复存在(P〉0.05)。此外,当掩蔽声由持续噪声换为间断噪声后,部分Ⅰ型神经元掩蔽时相的类型发生转变,其中最主要的转变为由前期抑制转变为均衡抑制(53.85%,7/13)。对下丘神经元声反应的时间域以及强度域,持续与间断噪声具有分化性前掩蔽效应,提示噪声前掩蔽并非简单的神经元发放压抑源,某些主动性神经调制机制可能参与了噪声条件下时相声信息的编码过程。  相似文献   

4.
自由声场条件下,以强度为神经元最小阈值阈上5dB,时程分别为40、60、80和100ms的纯音作为前掩蔽声,观察和记录了不同时程弱前掩蔽声对小鼠(Musmusculus Km)下丘神经元发放和声强处理的影响。实验记录到154个神经元,对其中的104个神经元做了不同时程掩蔽声影响的测试。结果发现:掩蔽声对神经元放电率的抑制作用在时间上表现为前抑制(41%)、后抑制(9%)和全抑制(50%)三种类型。改变掩蔽声时程时,大部分神经元(72%)的抑制类型不发生改变,但少部分神经元(28%)随掩蔽声时程的增加,大量的后抑制类型转变为前抑制或全抑制类型。此外,超过一半的神经元(58.06%)其强度.放电率函数曲线随掩蔽声时程的改变而发生转变,主要表现为单调型向饱和型转变及饱和型向非单调型转变,这种转变并不随掩蔽声时程增加表现出规律性的变化。结果表明,前掩蔽作用于下丘神经元声反应的时间域和强度域时具有不均衡性,推测不同时程弱前掩蔽声激活的抑制性输入能分化性调制下丘神经元声反应特性。  相似文献   

5.
抑制性频谱整合对大棕蝠下丘神经元声强敏感性的影响   总被引:6,自引:2,他引:4  
自由声场条件下 ,采用特定双声刺激方法研究了不同频率通道之间的非线性整合对下丘神经元声强敏感性的调制作用。实验在 1 2只麻醉与镇定的大棕蝠 (Eptesicusfuscus)上进行 ,双电极同步记录 2个配对神经元的声反应动作电位。主要结果如下 :1 )所获 1 1 0个 (5 5对 )配对神经元中 ,85 5 %表现为抑制性频谱整合作用 ,其余 1 4 5 %为易化性频谱整合 ;2 )阈上 1 0dB (SPL)放电率抑制百分比与神经元最佳频率 (BF)及记录深度呈负相关 ;3)抑制效率随声刺激强度升高而逐步下降 ;4 )当掩蔽声分别位于神经元兴奋性频率调谐曲线(FTC)内 (MSin) /外 (MSout)时 ,其抑制效率存在差异。前者的放电率抑制百分比及声反应动力学范围(DR)下降百分比均显著高于后者 ;5 )抑制性频谱整合导致 3类DR改变 :6 1 6 %为下降、 1 0 9%增加、另有2 7 5 %变化小于 1 0 %。本结果进一步支持如下设想 :下丘不同频率通道之间的抑制性频谱整合参与了对强度编码的主动神经调制活动  相似文献   

6.
昆明小鼠下丘神经元对调频声的反应   总被引:1,自引:0,他引:1  
尽管昆明小鼠下丘神经元对纯音的反应已有深入研究,但其对调频声的反应情况却未见报道。本研究在自由声场条件下,采用单单位细胞外记录方法,观察了昆明小鼠下丘神经元对调频声刺激的反应情况。根据神经元对调频声及纯音反应的阈值差异,所记录的99个下丘神经元可分为三种类型:对调频声刺激反应的阈值低于纯音的为Ⅰ型(57/99,57.6%),二者阈值相当的为Ⅱ型(12/99,12.1%),而纯音阈值低于调频声的为Ⅲ型(30/99,30.3%)。与Ⅲ型神经元相比,Ⅰ型神经元具有较低的CF和Q20dB(P<0.05和P<0.001)和较高的RB20dB(P<0.05)。通过分析下丘神经元对上、下扫时发放数的差异,发现有36个(36/99,36.4%)神经元表现出方向选择性,其中22个(22/99,22.2%)为上扫敏感,其余14个(14/99,14.2%)为下扫敏感,且上扫敏感性神经元比下扫敏感性神经元在Ⅰ、Ⅱ和Ⅲ型神经元中有更广的分布范围。通过比较发现,Ⅰ型神经元和方向选择性神经元的特征频率都非常集中地分布在10kHz-20kHz范围内(77.2%和83.3%)。此外,对其中24个神经元采取了不同调制速度的调频声刺激,大多数(15/24,62.5%)神经元对快调频声反应最为敏感,并且随着调制速度的升高,方向选择性神经元的比例有下降趋势(45.8%vs41.7%vs33.3%)。上述结果提示,昆明小鼠下丘神经元能有效处理调频声刺激,且具有方向选择性的调频声在昆明小鼠的声通讯中占有重要地位。  相似文献   

7.
应用常规电生理学技术,研究小鼠听皮层对中脑下丘神经元方位敏感性的下行调制.实验记录了198个下丘神经元的听反应,这些神经元的最佳方位角大多数(84.8%)位于听空间对侧20°~50°范围内.根据神经元的方位敏感曲线特征,将这些神经元分为方位选择型,半场型、多峰型和全向型四种调谐模式.电刺激听皮层对绝大多数下丘神经元方位角的范围产生易化(42.0%)或抑制(45.0%)效应,并使59.3%的神经元的最佳方位角发生了转移.结果提示,小鼠下丘神经元具有明显的方位敏感性,听皮层对下丘神经元听觉方位信息处理具有下行调制作用.此研究结果为深入研究中枢听觉信息处理的离皮质调控机制提供了重要实验资料.  相似文献   

8.
小鼠下丘神经元声刺激跟随力与声时程及强度的关系   总被引:2,自引:0,他引:2  
自由声场条件下,通过给予小鼠具有不同时程(10、40及100ms)、强度(最小阈值以上5、15、25、35及45dBSPL)、呈现率(0.5、1、2、3.3、5、6.7、10和20Hz)的纯音短声刺激,分析探讨了昆明小鼠下丘神经元声刺激跟随力与声时程及强度的关系。结果发现:多数神经元的脉冲发放数随声强增高而增加,随短声时程的延长而减少;随声强的增高,多数神经元的临界呈现率(CPR)和最大呈现率(MPR)变大,而随短声时程的延长,神经元的CPR、MPR变小为主要趋势;下丘神经元的声反应跟随力总体上随时程延长而下降,随声强加大而提高。推测当声时程延长、强度下降时,前次刺激对后继刺激声反应的抑制性影响增强,提示声时程适当缩短、声强增大可能有助于下丘神经元汇聚更多的声信息进行高级神经处理,从而提高听中枢表征高密度声信息的能力。  相似文献   

9.
在自然声环境中,多数与生命活动相关的声音都包含有调频声成分,这些调频声往往都具有不同的调制范围和重复率。本研究采用常规电生理技术检测小鼠下丘神经元对具有不同调制范围和刺激呈现率声信号的反应情况。在所记录的90 个下丘神经元中,超过60% 的神经元对较窄的调制范围有最好的反应(窄通型,上扫:60.00%, 54/90;下扫:63.33%,57/90),其它少部分的反应类型有带通型(上扫:16.67%,15/90;下扫:18.89%,17/90)、宽通型(上扫:4.44%, 4/90;下扫:4.44%, 4/90)和全通型(上扫:18.89%, 17/90;下扫:13.33%, 12/90)。当使用不同的刺激呈现率后(从0.5 次 /s 到10 次 /s),神经元的发放率和发放时程随着刺激呈现率的升高而缩短,而潜伏期则逐渐增加。另外,调制范围和刺激呈现率都会影响下丘神经元对调频声上下扫的方向选择性。以上结果表明小鼠中脑下丘神经元对调频声刺激反应的时相特征可受到调制范围和刺激呈现率的调制,其神经机制可能与下丘神经元的频谱以及时相整合有关。  相似文献   

10.
为探讨下丘(Inferior colliculus,IC)回声定位信号主频范围内的神经元的时程选择性,在自由声场刺激条件下,我们在4 只普氏蹄蝠的IC 采用不同时程的声刺激,研究了神经元的时程选择性。通过在体细胞外记录,共获得56 个声敏感下丘神经元,其记录深度、最佳频率和最小阈值的范围分别为1547 - 3967 (2878. 9 ±629.1)μm,20 -68 (49.0 ± 11. 1)kHz 和36.5 -95. 5 (59. 8 ±13. 0)dB SPL。根据所记录到的下丘神经元对不同时程的声刺激的反应,即对不同时程的选择性(Duration selectivity),将其分为6 种类型:短通型(Short-pass,SP,n = 11/56)、带通型(Band-pass,BP,n = 1/56)、长通型(Long-pass,LP,n = 5 /56)、反带通型(Band-reject,BR,n = 3 /56)、多峰型(Multi-peak,MP,n =6 /56)和全通型(All-pass,AP,n =30 /56)或非时程选择型(Nonduration-selective,NDS)。通过比较普氏蹄蝠下丘谐波主频内和主频外神经元的时程选择性,我们发现处于回声定位信号主频范围内神经元(n =32)比主频外神经元(n = 24)具有更短的最佳时程和更高的时程选择性。结果提示,在普氏蹄蝠回声定位过程中谐波主频内神经元较谐波主频外神经元发挥了更为重要的作用。  相似文献   

11.
Neurons in the central nucleus of the inferior colliculus (IC) receive excitatory and inhibitory inputs from both lower and higher auditory nuclei. Interaction of these two opposing inputs shapes response properties of IC neurons. In this study, we examine the interaction of excitation and inhibition on the responses of two simultaneously recorded IC neurons using a probe and a masker under forward masking paradigm. We specifically study whether a sound that serves as a probe to elicit responses of one neuron might serve as a masker to suppress or facilitate the responses of the other neuron. For each pair of IC neurons, we deliver the probe at the best frequency (BF) of one neuron and the masker at the BF of the other neuron and vice versa. Among 33 pairs of IC neurons recorded, this forward masking produces response suppression in 29 pairs of IC neurons and response facilitation in 4 pairs of IC neurons. The degree of suppression decreases with recording depth, sound level and BF difference between each pair of IC neurons. During bicuculline application, the degree of response suppression decreases in the bicuculline-applied neuron but increases in the paired neuron. Our data indicate that the forward masking of responses of IC neurons observed in this study is mostly mediated through GABAergic inhibition which also shapes the discharge pattern of these neurons. These data suggest that interaction among individual IC neurons improves auditory sensitivity during auditory signal processing.  相似文献   

12.
To study the effects of different durations of forward masker sound on neuronal firing and rate-intensity function(RIF)of mouse inferior collicular(IC)neurons,a tone relative to 5 dB above the minimum threshold(re MT+5 dB)of the best frequency of recorded neurons was used as forward masker sound under free field stimulation condition.The masker durations used were 40,60,80,and 100 ms.Results showed that as masker duration was increased,inhibition in neuronal firing was enhanced(P<0.0001,n=41)and the latency of neurons was lengthened(P<0.01,n=41).In addition,among 41 inhibited IC neurons,90.2%(37/41)exhibited narrowed dynamic range(DR)when masker sound duration was increased(P<0.0001),whereas the DR of 9.8%(4/41)became wider.These data suggest that masking effects of different durations of forward masker sound might be correlated with the amplitude and duration of inhibitory input to IC neurons elicited by the masker sound.  相似文献   

13.
To study the effects of different durations of forward masker sound on neuronal firing and rate-intensity function (RIF) of mouse inferior collicular (IC) neurons, a tone relative to 5 dB above the minimum threshold (re MT+5 dB) of the best frequency of recorded neurons was used as forward masker sound under free field stimulation condition. The masker durations used were 40, 60, 80, and 100 ms. Results showed that as masker duration was increased, inhibition in neuronal firing was enhanced (P < 0.000 1, n = 41) and the latency of neurons was lengthened (P<0.01, n = 41). In addition, among 41 inhibited IC neurons, 90.2% (37/41) exhibited narrowed dynamic range (DR) when masker sound duration was increased (P < 0.000 1), whereas the DR of 9.8%(4/41) became wider. These data suggest that masking effects of different durations of forward masker sound might be correlated with the amplitude and duration of inhibitory input to IC neurons elicited by the masker sound. __________ Translated from Journal of Central China Normal University (Nat. Sci.), 2005, 39(2): 236–240 [译自: 华中师范大学学报 (自然科学版), 2005, 39(2): 236–240]  相似文献   

14.
Goense JB  Feng AS 《PloS one》2012,7(2):e31589
Natural auditory scenes such as frog choruses consist of multiple sound sources (i.e., individual vocalizing males) producing sounds that overlap extensively in time and spectrum, often in the presence of other biotic and abiotic background noise. Detection of a signal in such environments is challenging, but it is facilitated when the noise shares common amplitude modulations across a wide frequency range, due to a phenomenon called comodulation masking release (CMR). Here, we examined how properties of the background noise, such as its bandwidth and amplitude modulation, influence the detection threshold of a target sound (pulsed amplitude modulated tones) by single neurons in the frog auditory midbrain. We found that for both modulated and unmodulated masking noise, masking was generally stronger with increasing bandwidth, but it was weakened for the widest bandwidths. Masking was less for modulated noise than for unmodulated noise for all bandwidths. However, responses were heterogeneous, and only for a subpopulation of neurons the detection of the probe was facilitated when the bandwidth of the modulated masker was increased beyond a certain bandwidth - such neurons might contribute to CMR. We observed evidence that suggests that the dips in the noise amplitude are exploited by TS neurons, and observed strong responses to target signals occurring during such dips. However, the interactions between the probe and masker responses were nonlinear, and other mechanisms, e.g., selective suppression of the response to the noise, may also be involved in the masking release.  相似文献   

15.
Natural auditory environment consists of multiple sound sources that are embedded in ambient strong and weak noise. For effective sound communication and signal analysis, animals must somehow extract biologically relevant signals from the inevitable interference of ambient noise. The present study examined how a weak noise may affect the amplitude sensitivity of neurons in the mouse central nucleus of the inferior colliculus (IC) which receives convergent excitatory and inhibitory inputs from both lower and higher auditory centers. Specifically, we studied the amplitude sensitivity of IC neurons using a probe (best frequency pulse) and a masker (weak noise) under simultaneous masking paradigm. For most IC neurons, weak noise masking increases the minimum threshold and decreases the number of impulses. Noise masking also increased the slope and decreased the dynamic range of the rate amplitude function of these IC neurons. The strength of this noise masking was greater at low than at high sound amplitudes. This variation in the amplitude sensitivity of IC neurons in the presence of the weak noise was mostly mediated through GABAergic inhibition. These data indicate that in the real world the ambient weak noise improves amplitude sensitivity of IC neurons through GABAergic inhibition while inevitably decreases the range of overall auditory sensitivity of IC neurons.  相似文献   

16.
Previous studies in the inferior colliculus have shown that spatial separation of signal and noise sources improves signal detection. In this study, we investigated the free-field unmasking response properties of single fibers in the auditory nerve--these were compared to those of inferior colliculus neurons under the same experimental conditions to test the hypothesis that central processing confers advantages for signal detection in the presence of spatially separated noise. For each neuron, we determined the detection threshold for a probe at the unit's best azimuth under three conditions: (1) by itself, (2) when a masker at a constant level was also presented at the unit's best azimuth, and (3) when the masker was positioned at different azimuths. We found that, on average, maskers presented at a unit's best azimuth elevated the probe detection threshold by 4.22 dB in the auditory nerve and 10.97 dB in the inferior colliculus. Angular separation of probe and masker sources systematically reduced the masking effect. The maximum masking release was on average 2.90 dB for auditory nerve fibers and 9.40 dB for inferior colliculus units. These results support the working hypothesis, suggesting that central processing contributes to the stronger free-field unmasking in the inferior colliculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号