首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Western blot (immunoblot) analysis of Bacillus subtilis cell extracts detected two proteins that cross-reacted with monospecific polyclonal antibody raised against Escherichia coli initiation factor 2 alpha (IF2 alpha). Subsequent Southern blot analysis of B. subtilis genomic DNA identified a 1.3-kilobase (kb) HindIII fragment which cross-hybridized with both E. coli and Bacillus stearothermophilus IF2 gene probes. This DNA was cloned from a size-selected B. subtilis plasmid library. The cloned HindIII fragment, which was shown by DNA sequence analysis to encode the N-terminal half of the B. subtilis IF2 protein and 0.2 kb of upstream flanking sequence, was utilized as a homologous probe to clone an overlapping 2.76-kb ClaI chromosomal fragment containing the entire IF2 structural gene. The HindIII fragment was also used as a probe to obtain overlapping clones from a lambda gt11 library which contained additional upstream and downstream flanking sequences. Sequence comparisons between the B. subtilis IF2 gene and the other bacterial homologs from E. coli, B. stearothermophilus, and Streptococcus faecium displayed extensive nucleic acid and protein sequence homologies. The B. subtilis infB gene encodes two proteins, IF2 alpha (78.6 kilodaltons) and IF2 beta (68.2 kilodaltons); both were expressed in B. subtilis and E. coli. These two proteins cross-reacted with antiserum to E. coli IF2 alpha and were able to complement in vivo an E. coli infB gene disruption. Four-factor recombination analysis positioned the infB gene at 145 degrees on the B. subtilis chromosome, between the polC and spcB loci. This location is distinct from those of the other major ribosomal protein and rRNA gene clusters of B. subtilis.  相似文献   

2.
3.
Motility of the alkalophilic Bacillus sp. C-125, a flagellate bacterium, was demonstrated to be Na(+)- and pH-dependent. Flagellin protein from this strain was purified to homogeneity and the N-terminal sequence determined. Using the hag gene of Bacillus subtilis as a probe, the hag gene of Bacillus sp. C-125 was identified and cloned into Escherichia coli. Sequencing of this hag gene revealed that it encodes a protein of 272 amino acids (M(r) 29,995). The predicted N terminal sequence of this protein was identical to that determined by N-terminal sequencing of the flagellin protein from strain C-125. The alkalophilic Bacillus sp. C-125 flagellin shares homology with other known flagellins in both the N- and C-terminal regions. The middle portion, however, shows considerable differences, even from that of flagellin from the related species, B. subtilis.  相似文献   

4.
The gene that encodes a thermostable endo-arabinase (called ABN-TS) from Bacillus thermodenitrificans TS-3 was cloned, sequenced, and expressed in the mesophilic B. subtilis. The gene contained an open reading frame consists of 939 bp, which encodes 313 amino acids. The deduced amino acid sequence of the enzyme showed 50, 46, and 36% similarity with endo-arabinase from B. subtilis IFO 3134 (PPase-C), Pseudomonas fluorescens (ArbA), and Aspergillus niger (ABNA), respectively. The hydrophobic and acidic amino acids making up ABN-TS outnumbered those in PPase-C. The gene product expressed in B. subtilis, as the host, had substantially the same characteristics, and was stable up to 70 degrees C, and the reaction was optimal around 70 degrees C, as well as native ABN-TS.  相似文献   

5.
6.
The metE gene, encoding S-adenosylmethionine synthetase (EC 2.5.1.6) from Bacillus subtilis, was cloned in two steps by normal and inverse PCR. The DNA sequence of the metE gene contains an open reading frame which encodes a 400-amino-acid sequence that is homologous to other known S-adenosylmethionine synthetases. The cloned gene complements the metE1 mutation and integrates at or near the chromosomal site of metE1. Expression of S-adenosylmethionine synthetase is reduced by only a factor of about 2 by exogenous methioinine. Overproduction of S-adenosylmethionine synthetase from a strong constitutive promoter leads to methionine auxotrophy in B. subtilis, suggesting that S-adenosylmethionine is a corepressor of methionine biosynthesis in B. subtilis, as others have already shown for Escherichia coli.  相似文献   

7.
8.
The Bacillus subtilis gene encoding glutamine phosphoribosylpyrophosphate amidotransferase (amidophosphoribosyltransferase) was cloned in pBR322. This gene is designated purF by analogy with the corresponding gene in Escherichia coli. B. subtilis purF was expressed in E. coli from a plasmid promoter. The plasmid-encoded enzyme was functional in vivo and complemented an E. coli purF mutant strain. The nucleotide sequence of a 1651-base pair B. subtilis DNA fragment was determined, thus localizing the 1428-base pair structural gene. A primary translation product of 476 amino acid residues was deduced from the DNA sequence. Comparison with the previously determined NH2-terminal amino acid sequence indicates that 11 residues are proteolytically removed from the NH2 terminus, leaving a protein chain of 465 residues having an NH2-terminal active site cysteine residue. Plasmid-encoded B. subtilis amidophosphoribosyltransferase was purified from E. coli cells and compared to the enzymes from B. subtilis and E. coli. The plasmid-encoded enzyme was similar in properties to amidophosphoribosyltransferase obtained from B. subtilis. Enzyme specific activity, immunological reactivity, in vitro lability to O2, Fe-S content, and NH2-terminal processing were virtually identical with amidophosphoribosyltransferase purified from B. subtilis. Thus E. coli correctly processed the NH2 terminus and assembled [4Fe-4S] centers in B. subtilis amidophosphoribosyltransferase although it does not perform these maturation steps on its own enzyme. Amino acid sequence comparison indicates that the B. subtilis and E. coli enzymes are homologous. Catalytic and regulatory domains were tentatively identified based on comparison with E. coli amidophosphoribosyltransferase and other phosphoribosyltransferase (Argos, P., Hanei, M., Wilson, J., and Kelley, W. (1983) J. Biol. Chem. 258, 6450-6457).  相似文献   

9.
Cloning and expression of subtilisin amylosacchariticus gene   总被引:7,自引:0,他引:7  
The gene encoding subtilisin Amylosacchariticus from Bacillus subtilis var. amylosacchariticus was isolated and the entire nucleotide sequence of the coding sequence was determined. The deduced amino acid sequence revealed an N-terminal signal peptide and pro-peptide of 106 residues followed by the mature protein comprising 275 residues. There were discrepancies in 10 amino acids between the sequence elucidated from the nucleotide sequence and the published protein sequence (Kurihara et al. (1972) J. Biol. Chem. 247, 5619-5631). The nucleotide sequence was highly homologous to that of subtilisin E gene from B. subtilis 168, with discrepancies at 12 nucleotides out of 1,426 nucleotides we sequenced. Ten of them were found in mature subtilisin coding sequence, which resulted in two amino acid changes and another one was in the putative promoter region between two genes. The productivity of subtilisin in culture broth of B. subtilis var. amylosacchariticus was much higher than that of B. subtilis 168. The enzyme gene was inserted in a shuttle vector pHY300PLK, with which B. subtilis ISW1214 was transformed. The proteolytic activity found in the culture broth of the transformed bacterium was 20- and 4-fold higher than those of the host strain and B. subtilis var. amylosacchariticus, respectively. Subtilisin Amylosacchariticus was easily purified to a crystalline form from culture filtrate of cloned B. subtilis, after a single step of chromatography on CM-cellulose.  相似文献   

10.
11.
The lon gene of Escherichia coli encodes the ATP-dependent serine protease La and belongs to the family of sigma 32-dependent heat shock genes. In this paper, we report the cloning and characterization of the lon gene from the gram-positive bacterium Bacillus subtilis. The nucleotide sequence of the lon locus, which is localized upstream of the hemAXCDBL operon, was determined. The lon gene codes for an 87-kDa protein consisting of 774 amino acid residues. A comparison of the deduced amino acid sequence with previously described lon gene products from E. coli, Bacillus brevis, and Myxococcus xanthus revealed strong homologies among all known bacterial Lon proteins. Like the E. coli lon gene, the B. subtilis lon gene is induced by heat shock. Furthermore, the amount of lon-specific mRNA is increased after salt, ethanol, and oxidative stress as well as after treatment with puromycin. The potential promoter region does not show similarities to promoters recognized by sigma 32 of E. coli but contains sequences which resemble promoters recognized by the vegetative RNA polymerase E sigma A of B. subtilis. A second gene designated orfX is suggested to be transcribed together with lon and encodes a protein with 195 amino acid residues and a calculated molecular weight of 22,000.  相似文献   

12.
The nucleotide sequence of the Bacillus subtilis fliM gene has been determined. This gene encodes a 38-kDa protein that is homologous to the FliM flagellar switch proteins of Escherichia coli and Salmonella typhimurium. Expression of this gene in Che+ cells of E. coli and B. subtilis interferes with normal chemotaxis. The nature of the chemotaxis defect is dependent upon the host used. In B. subtilis, overproduction of FliM generates mostly nonmotile cells. Those cells that are motile switch less frequently. Expression of B. subtilis FliM in E. coli also generates nonmotile cells. However, those cells that are motile have a tumble bias. The B. subtilis fliM gene cannot complement an E. coli fliM mutant. A frameshift mutation was constructed in the fliM gene, and the mutation was transferred onto the B. subtilis chromosome. The mutant has a Fla- phenotype. This phenotype is consistent with the hypothesis that the FliM protein encodes a component of the flagellar switch in B. subtilis. Additional characterization of the fliM mutant suggests that the hag and mot loci are not expressed. These loci are regulated by the SigD form of RNA polymerase. We also did not observe any methyl-accepting chemotaxis proteins in an in vivo methylation experiment. The expression of these proteins is also dependent upon SigD. It is possible that a functional basal body-hook complex may be required for the expression of SigD-regulated chemotaxis and motility genes.  相似文献   

13.
Sequence of the Bacillus subtilis glutamine synthetase gene region   总被引:19,自引:0,他引:19  
The nucleotide sequence of the glutamine synthetase (GS) region of Bacillus subtilis has been determined and found to contain several unique features. An open reading frame (ORF) upstream of the GS structural gene is part of the same operon as GS and is involved in regulation. Two downstream ORFs are separated from glnA by an apparent Rho-independent termination site. One of the downstream ORFs encodes a very hydrophobic polypeptide and contains its own potential RNA polymerase and ribosome-binding sites. The derived amino acid (aa) sequence of B. subtilis GS is similar to that of several other prokaryotes, especially to the GS of Clostridium acetobutylicum. The B. subtilis and C. acetobutylicum enzymes differ from the others in the lack of a stretch of about 25 aa as well as the presence of extra cysteine residues in a region known to contain regulatory as well as catalytic mutations. The region around the tyrosine residue that is adenylylated in GS from many species is fairly similar in the B. subtilis GS despite its lack of adenylylation.  相似文献   

14.
15.
16.
A thermostable chitosanase gene from the environmental isolate Bacillus sp. strain CK4, which was identified on the basis of phylogenetic analysis of the 16S rRNA gene sequence and phenotypic analysis, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30-kDa enzyme. The deduced amino acid sequence of the chitosanase from Bacillus sp. strain CK4 exhibits 76.6, 15.3, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. strain CK4 belongs to cluster III with B. subtilis. The gene was similar in size to that of the mesophile B. subtilis but showed a higher preference for codons ending in G or C. The enzyme contains 2 additional cysteine residues at positions 49 and 211. The recombinant chitosanase has been purified to homogeneity by using only two steps with column chromatography. The half-life of the enzyme was 90 min at 80 degrees C, which indicates its usefulness for industrial applications. The enzyme had a useful reactivity and a high specific activity for producing functional oligosaccharides as well, with trimers through hexamers as the major products.  相似文献   

17.
18.
A Bacillus subtilis gene termed yhfR encodes the only B. subtilis protein with significant sequence similarity to 2, 3-diphosphoglycerate-dependent phosphoglycerate mutases (dPGM). This gene is expressed at a low level during growth and sporulation, but deletion of yhfR had no effect on growth, sporulation, or spore germination and outgrowth. YhfR was expressed in and partially purified from Escherichia coli but had little if any PGM activity and gave no detectable PGM activity in B. subtilis. These data indicate that B. subtilis does not require YhfR and most likely does not require a dPGM.  相似文献   

19.
N Vasantha  L D Thompson 《Gene》1986,49(1):23-28
Subtilisin is synthesized as a preproenzyme in Bacillus subtilis. We fused that region of the subtilisin gene, (apr[BamP]), which encodes the signal sequence and pro region, to the mature gene sequence (spa) for a heterologous protein (staphylococcal protein A). B. subtilis cells harboring this gene fusion synthesized a fusion protein consisting of the signal and pro sequence of subtilisin fused to the protein A; the signal sequence was processed and a fusion protein (pro + protein A) was secreted into the growth medium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号