首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Poly(3-hydroxybutyrate) (PHB) was produced by fed-batch cultures of Ralstonia eutropha with phosphate limitation under different glucose concentrations. When glucose was kept at 2.5 g l–1, cell growth and PHB synthesis were limited due to the shortage of carbon source but a higher PHB content occurred in the cell-growth stage. This shows that a low glucose concentration is favorable for PHB accumulation in R. eutropha. PHB obtained with glucose at 9 g l–1 is 1.6 times that obtained with 40 g l–1. When glucose was in the range of 9 to 40 g l–1, PHB concentration and productivity decreased significantly with the increase of glucose concentration. The highest PHB productivity was obtained with glucose at 9 g l–1.  相似文献   

2.
Recombinant Escherichia coli strain GCSC 6576, harboring a high-copy-number plasmid containing the Ralstonia eutropha genes for polyhydroxyalkanoate (PHA) synthesis and the E. coli ftsZ gene, was employed to produce poly-(3-hydroxybutyrate) (PHB) from whey. pH-stat fed-batch fermentation, using whey powder as the nutrient feed, produced cellular dry weight and PHB concentrations of 109 g l−1 and 50 g l−1 respectively in 47 h. When concentrated whey solution containing 210 g l−1 lactose was used as the nutrient feed, cellular dry weight and PHB concentrations of 87 g l−1 and 69 g l−1 respectively could be obtained in 49 h by pH-stat fed-batch culture. The PHB content was as high as 80% of the cellular dry weight. These results suggest that cost-effective production of PHB is possible by fed-batch culture of recombinant E. coli using concentrated whey solution as a substrate. Received: 19 December 1997 / Received revision: 17 March 1998 / Accepted: 20 March 1998  相似文献   

3.
Two inexpensive substrates, starch and whey were used to produce poly(3-hydroxybutyrate) (PHB) in fed-batch cultures of Azotobacter chroococcum and recombinant Escherichia coli, respectively. Oxygen limitation increased PHB contents in both fermentations. In fed-batch culture of A. chroococcum, cell concentration of 54 g l−1 with 46% PHB was obtained with oxygen limitation, whereas 71 g l−1 of cell with 20% PHB was obtained without oxygen limitation. The timing of PHB biosynthesis in recombinant E. coli was controlled using the agitation speed of a stirred tank fermentor. A PHB content of 80% could be obtained with oxygen limitation by increasing the agitation speed up to only 500 rpm.  相似文献   

4.
Bai DM  Wei Q  Yan ZH  Zhao XM  Li XG  Xu SM 《Biotechnology letters》2003,25(21):1833-1835
A fed-batch fermentation of Lactobacillus lactis to produce l-lactic acid was developed in which the residual glucose concentration in the culture was used to control a continuous feeding strategy. Up to 210 g l-lactic acid l–1 (97% yield) was obtained. The maximal dry cell was 2.7 g l–1 and the average l-lactic acid productivity was 2.2 g l–1 h–1.  相似文献   

5.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

6.
Summary This paper presents a study of propionic acid and propionibacteria production from whey by usingPropionibacterium acidi-propionici in continuous fermentation with cell recycle. The highest propionic acid volumetric productivity achieved was 5 g.l–1.h–1 with no biomass bleeding. A maximal biomass concentration of 130 g.l–1 was achieved before initiating biomass bleeding to give a biomass volumetric productivity of 3.2 g.l–1.h–1 with a biomass of 75 g.l–1 and a propionic acid productivity of 3.6 g.l–1.h–1 (for about 100 hours i.e. more than 50 residence times).  相似文献   

7.
A repeated batch process was performed to culture Bifidobacterium longum CCRC 14634. An on-line device, oxidation-reduction potential (ORP), was used to monitor cell growth and uptake of nutrients in the culture. The ORP of the culture medium decreased substantially during fermentation until nutrients were depleted. Six cycles of batch fermentation using ORP as a control parameter were successfully carried out. As soon as ORP remained constant or increased, three-quarters of the broth was removed, and the same volume of fresh medium was fed to the fermenter for a new cycle of cultivation. Average cell concentrations of 1.9×109 and 3.4×109 cfu ml–1 for repeated batch fermentation in MRS (Lactobacilli MRS broth) and WY (containing whey hydrolyzates, yeast extract, l-cysteine) medium, respectively, were achieved. Cell mass productivities for batch, fed-batch and repeated batch fermentation using MRS medium were 0.51, 0.41, and 0.64 g l–1 h–1, respectively, and those for batch and repeated batch using WY medium were 0.76, 0.99 g l–1 h–1, respectively. The results indicate a possible industrial process to culture Bifidobacteria sp.  相似文献   

8.
The economics of incorporating membrane modules in several steps in the conversion of whey permeate to lactic acid was studied. Membrane recycle fermenters operating at a cell concentration of 40 g l–1 resulted in a productivity of 22.5 g l–1h–1 with a lactate concentration of 89 g l–1 and a yield of 0.89. The membrane units (reverse osmosis for preconcentrating whey permeate, hollow-fiber ultrafiltration for clarification and for cell recycling) contribute about 28% of the total fixed capital costs and less than 5% of the operating cost. The two largest costs are whey transportation and yeast extract, contributing about 35% and 38% to the total product cost of US $ 0.98/kg 85% lactate. Without these two costs, unpurified lactate could be produced for $ 0.27/kg.  相似文献   

9.
Xylitol was produced a in two-substrate, batch fermentation with cell recycling of Candida tropicalis ATCC 13803. A series of cell-recycle experiments showed that the feeding of xylose, glucose and yeast extract in the xylitol production phase was most effective in enhancing xylitol productivity. The optimized cell recycle fermentation resulted in 0.82 g xylitol/g xylose yield, 4.94 g xylitol l–1 h–1 productivity, and final xylitol concentration of 189 g l–1. These results were 1.3 times higher in volumetric xylitol productivity and 2.2 times higher in final product concentration compared with the corresponding values of the optimized two-substrate batch culture.  相似文献   

10.
The continuous bioconversion of xylose-containing solutions (obtained by acid hydrolysis of barley bran) into xylitol was carried out using the yeast Debaryomyces hansenii under microaerophilic conditions with or without cell recycle. In fermentations without cell recycle, the volumetric productivities ranged from 0.11–0.6 g l–1 h–1 were obtained for dilution rates of 0.008–0.088 h–1. In experiments performed with cell recycle after membrane separation, the optimum xylitol productivity (2.53 g l–1 h–1) was reached at a dilution rate of 0.284 h–1.  相似文献   

11.
A comparative study of catalytic and biocatalytic glucose oxidation was carried out. Gluconobacter oxydans NBIMCC 1043 strain was used for biocatalytic glucose conversion. In the case of cell recycle coupled with cross-flow microfiltration the productivity and biomass concentration reached 40% and 3 g l–1 respectively, in comparison to those of batch fermentation (21% and 2.3 g l–1, respectively).  相似文献   

12.
Production of poly(3-hydroxybutyrate) [P(3HB)] from wheyby fed-batch culture of recombinant Escherichia coli CGSC 4401 harboring a plasmid containing the Alcaligenes latus polyhydroxyalkanoate (PHA) biosynthesis genes was examined in a 30 l fermenter supplying air only. With lactose below 2 g l–1, cells grew to 12 g dry cell l–1 with 9% (w/w) P(3HB) content. Accumulation of P(3HB) could be triggered by increasing lactose to 20 g l–1. By employing this strategy, 51 g dry cell l–1 was obtained with a 70% (w/w) P(3HB) content after 26 h. The productivity was 1.35 g P(3HB) l–1 h–1. The same fermentation strategy was used in a 300 l fermenter, and 30 g dry cell l–1 with 67% (w/w) P(3HB) content was obtained in 20 h.  相似文献   

13.
Poly(3-hydroxybutyrate) (PHB) synthesis was analyzed under microaerobic conditions in a recombinant Escherichia coli arcA mutant using glycerol as the main carbon source. The effect of several additives was assessed in a semi-synthetic medium by the ‘one-factor-at-a-time’ technique. Casein amino acids (CAS) concentration was an important factor influencing both growth and PHB accumulation. Three factors exerting a statistically significant influence on PHB synthesis were selected by using a Plackett–Burman screening design [glycerol, CAS, and initial cell dry weight (CDW) concentrations] and then optimized through a Box–Wilson design. Under such optimized conditions (22.02 g l−1 glycerol, 1.78 g l−1 CAS, and 1.83 g l−1 inoculum) microaerobic batch cultures gave rise to 8.37 g l−1 CDW and 3.52 g l−1 PHB in 48 h (PHB content of 42%) in a benchtop bioreactor. Further improvements in microaerobic PHB accumulation were obtained in fed-batch cultures, in which glycerol was added to maintain its concentration above 5 g l−1. After 60 h, CDW and PHB concentration reached 21.17 and 10.81 g l−1, respectively, which results in a PHB content of 51%. Microaerobic fed-batch cultures allowed a 2.57-fold increase in volumetric productivity when compared with batch cultures. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

14.
Acetone butanol ethanol (ABE) was produced in an integrated fed-batch fermentation-gas stripping product-recovery system using Clostridium beijerinckii BA101, with H2 and CO2 as the carrier gases. This technique was applied in order to eliminate the substrate and product inhibition that normally restricts ABE production and sugar utilization to less than 20 g l–1 and 60 g l–1, respectively. In the integrated fed-batch fermentation and product recovery system, solvent productivities were improved to 400% of the control batch fermentation productivities. In a control batch reactor, the culture used 45.4 g glucose l–1 and produced 17.6 g total solvents l–1 (yield 0.39 g g–1, productivity 0.29 g l–1 h–1). Using the integrated fermentation-gas stripping product-recovery system with CO2 and H2 as carrier gases, we carried out fed-batch fermentation experiments and measured various characteristics of the fermentation, including ABE production, selectivity, yield and productivity. The fed-batch reactor was operated for 201 h. At the end of the fermentation, an unusually high concentration of total acids (8.5 g l–1) was observed. A total of 500 g glucose was used to produce 232.8 g solvents (77.7 g acetone, 151.7 g butanol, 3.4 g ethanol) in 1 l culture broth. The average solvent yield and productivity were 0.47 g g–1 and 1.16 g l–1 h–1, respectively.  相似文献   

15.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   

16.
d-Ribose, a five-carbon sugar, is used as a key intermediate for the production of various biomaterials, such as riboflavin and inosine monophosphate. A high d-ribose-producing Bacillus subtilis SPK1 strain was constructed by the chemical mutation of the transketolase-deficient strain, B. subtilis JY1. Batch fermentation of B. subtilis SPK1 with 20 g l–1 xylose and 20 g l–1 glucose resulted in 4.78 g l–1 dry cell mass, 23.0 g l–1d-ribose concentration, and 0.72 g l–1 h–1 productivity, corresponding to a 1.5- to 1.7-fold increase when compared with values for the parental strain. A late-exponential phase was chosen as the best point for switching to a fed-batch process. Optimized fed-batch fermentation of B. subtilis SPK1, feeding a mixture of 200 g l–1 xylose and 50 g l–1 glucose after the late-exponential phase reduced the residual xylose and glucose concentrations to less than 7.0 g l–1 and gave the best results of 46.6 g l–1d-ribose concentration and 0.88 g l–1 h–1 productivity which were 2.0- and 1.2-fold higher than the corresponding values in a simple batch fermentation.  相似文献   

17.
Continuous mix batch bioreactors were used to study the kinetic parameters of lactic acid fermentation in microaerated-nutrient supplemented, lactose concentrated cheese whey using Lactobacillus helveticus. Four initial lactose concentrations ranging from 50 to 150 g l–1 were first used with no microaeration and no yeast extract added to establish the substrate concentration above which inhibition will occur and then the effects of microaeration and yeast extract on the process kinetic parameters were investigated. The experiments were conducted under controlled pH (5.5) and temperature (42 °C) conditions. The results indicated that higher concentrations of lactose had an inhibitory effect as they increased the lag period and the fermentation time; and decreased the specific growth rate, the maximum cell number, the lactose utilization rate, and the lactic acid production rate. The maximum lactic acid conversion efficiency (75.8%) was achieved with the 75 g l–1 initial lactose concentration. The optimum lactose concentration for lactic acid production was 75 g l–1 although Lactobacillus helveticus appeared to tolerate up to 100 g l–1 lactose concentration. Since the lactic acid productivity is of a minor importance compared to lactic acid concentration when considering the economic feasibility of lactic acid production from cheese whey using Lactobacillus helveticus, a lactose concentration of up to 100 g l–1 is recommended. Using yeast extract and/or microaeration increased the cell number, specific growth rate, cell yield, lactose consumption, lactic acid utilization rate, lactic acid concentration and lactic acid yield; and reduced the lag period, fermentation time and residual lactose. Combined yeast extract and microaeration produced better results than each one alone. From the results it appears that the energy uncoupling of anabolism and catabolism is the major bottleneck of the process. Besides lactic acid production, lactose may also be hydrolysed into glucose and galactose. The -galactosidase activity in the medium is caused by cell lysis during the exponential growth phase. The metabolic activities of Lactobacillus helveticus in the presence of these three sugars need further investigation.  相似文献   

18.
Glucose-stat and pH-stat control strategies were employed in order to culture a recombinant E. coli XL1 Blue to produce a fusion protein of sweet potato sporamin (SPA) and glutathione S-transferase (GST) from the recombinant E. coli XL1 Blue. Cell densities up to 25 g l–1 and 28.9 mg fusion protein (GST-SPA) g–1 cell dry weight (CDW) was achieved from a fed-batch fermentation controlled by glucose-stat strategy. A pH-stat control fermentation using glycerol as a carbon source gave E. coli up to 27 g l–1 and 31.5 mg GST-SPA g–1 CDW. Additionally, a pH-stat control strategy using glucose as a carbon source gave E. coli up to 15 g l–1 and about 22.7 mg g–1 CDW of GST-SPA.  相似文献   

19.
The feeding of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] by Alcaligenes eutrophus ATCC17697 was optimized using a fed-batch culture system. The concentration of propionic acid was maintained at 3 g l–1 as growth was inhibited by propionic acid in the broth. A pH-stat substrate feeding system was used in which propionic acid was fed automatically to maintain a pH of the culture broth at 7.0. By feeding a substrate solution containing 20% (w/v) propionic acid, 4.9% (w/v) ammonia water [at a molar ratio of carbon to nitrogen (C/N molar ratio) of 10] in cell growth phase, the concentration of propionic acid in the broth was maintained at 3 g l–1 giving a specific growth rate of 0.4 h–1. To promote P(3HB-co-3HV) production, two stage fed-batch culture which consisted of the stage for the cell growth and the stage for the P(3HB-co-3HV) accumulation was carried out. When the substrate solution whose C/N molar ratio was 50 was fed in P(3HB-co-3HV) accumulation phase, the cell concentration and the P(3HB-co-3HV) content in the cells reached 64 g l–1 and 58% (w/w) in 55.5 h, respectively.  相似文献   

20.
Using lactose as an inducer, recombinant human interleukin-2 (rhIL-2) was synthesized with an N-terminus fusion partner, G3 (three tandem-arranged glucagon peptides) in fed-batch cultures at high cell concentration (60–90 g l–1) of Escherichia coli BL21(DE3) [pT7-G3IL2]. With batch additions of lactose (4 × 13.5 g), the fusion rhIL-2 was synthesized up to 9.3 g l–1. However, if all the lactose (54 g) was added at once to the culture, synthesized fusion rhIL-2 decreased to 5.4 g l–1 with a decreased cell growth rate. A statistical optimization of the production medium containing glucose, yeast extract, and lactose led to fusion rhIL-2 being produced at > 9 g l–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号