首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effects of a newly synthesized compound, 7-(3-[4-(2,3-dimethylphenyl)piperazinyl]propoxy)-2(1H)-quinolinone (OPC-4392), on tyrosine hydroxylation in situ and in vitro were studied using rat striatal slices and tyrosine hydroxylase (TH) purified from bovine adrenal medulla, respectively. OPC-4392 dose-dependently inhibited L-dihydroxyphenylalanine (DOPA) formation in rat striatal slices with IC50 values of about 10(-6) M. The inhibitory effect of OPC-4392 on in situ DOPA formation was dose-dependently reversed by addition of sulpiride, a dopamine D2 receptor antagonist, whereas no change was observed by addition of nomifensine (5 X 10(-6) M), a blocker of dopamine uptake. From in vitro experiment using purified TH, OPC-4392 affected neither the enzymatic activity nor the Km value for 6-methyl-5,6,7,8-tetrahydropterin (6MPH4). These results suggest that OPC-4392 impairs in situ DOPA formation by stimulating presynaptic dopamine D2 receptor as a dopamine agonist, and not by directly inhibiting the TH activity.  相似文献   

2.
The authors demonstrate stereospecificity of the action of butaclamol enantiomers on substrate inhibition of hypothalamic tyrosine hydroxylase (TH) and regulation of the tyrosine hydroxylase response by the presynaptic membrane (presynaptic receptors) of rat hypothalamus synaptosomes under membrane activation with dopamine. The effect of (+)-butaclamol on the substrate inhibition of TH was noticeable at a concentration of 10(-8)M, reaching a maximum at 10(-5)M. (-)-Butaclamol administered at the same concentrations did not influence the substrate inhibition of the enzyme. (+)-Butaclamol added to the incubation medium containing hypothalamic synaptosomes concurrently with dopamine (10(-5)M) completely blocked the regulatory action of the latter on TH, with this action mediated via presynaptic receptors. (-)-Butaclamol (10(-5)M) antagonized the action of dopamine under the same conditions. The data obtained indicate high stereo-specificity of butaclamol enantiomers as regards their effect on presynaptic regulation of TH, suggesting that elimination of the substrate inhibition of hypothalamic TH is a stereoselective effect of neuroleptics and can be a prognostically important criterion in the appraisal of compounds with potential neuroleptic activity.  相似文献   

3.
The effects of neurotensin (NT) alone or in combination with the dopamine antagonist sulpiride were tested on the release of endogenous acetylcholine (ACh) from striatal slices. NT enhanced potassium (25 mM)-evoked ACh release from striatal slices in a dose-dependent manner. This effect was tetrodotoxin-insensitive, suggesting an action directly on cholinergic elements. The dopamine antagonist sulpiride (5 x 10(-5) M) significantly increased (63%) potassium-evoked ACh release from striatal slices; potassium-evoked ACh release was further increased (90%) in the presence of NT (10(-5) M) and sulpiride (5 x 10(-5) M). The second set of experiments tested the effects of 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra on NT-induced increases of potassium-evoked ACh release. These lesions did not alter the NT regulation of potassium-evoked ACh release from striatal slices, but did significantly increase spontaneous (33%) and potassium-evoked (40%) ACh release from striatal slices. Striatal choline acetyltransferase activity was not affected by 6-OHDA lesions. In addition, following 6-OHDA lesions, sulpiride was ineffective in altering ACh release from striatal slices. Furthermore, evoked ACh release in the presence of the combination of NT and sulpiride was not different from that in the presence of NT alone. These results suggest that in the rat striatum, NT regulates cholinergic interneuron activity by interacting with NT receptors associated with cholinergic elements. Moreover, the NT modulation of cholinergic activity is independent of either an interaction of NT with D2 dopamine receptors or the sustained release of dopamine.  相似文献   

4.
Effects of haloperidol (10(-7)-alpha 10(-5) M), trifluoperazine, metoclopramide, tiapride, sulpiride, thioridazine, clozapine remoxipride, raclopride, cis- and trans-isomers of carbidine, SCH 23390 (all at the 10(-6) M) on the K(+)-stimulated (28 mM) dopamine (DA) release from isolated rat striatum were studied. Haloperidol at the concentration of 10(-7) and 10(-6) M failed to affect, while at 10(-5) M the drug decreased the stimulated striatal DA release. Trifluoperazine, metoclopramide and tiapride were shown not to modify this process. Sulpiride, thioridazine, clozapine, remoxipride, raclopride, isomers of carbidine were found to increase significantly the stimulated striatal DA release. SCH 23390 failed to affect K(+)-stimulated release of DA in the striatum and also did not change K(+)-stimulated release enhancement produced by raclopride. It is suggested that the mechanism underlying observed effects of the drugs may contribute to pharmacological profile of atypical neuroleptics.  相似文献   

5.
The hypothesis that dopamine (DA) autoreceptors modulate the phosphorylation of tyrosine hydroxylase (TH; EC 1.14.16.2) was investigated in rat striatal slices. Tissue was prelabeled with 32P inorganic phosphate, and TH recovered by immunoprecipitation with anti-TH rabbit serum. The TH monomer was resolved on sodium dodecyl sulfate polyacrylamide gels, and the extent of phosphorylation was determined by scanning densitometry of autoradiographs. Depolarization of striatal slices with 55 mM K+ markedly increased the incorporation of 32P into several proteins, including the TH monomer (Mr = 60,000). A similar increase in TH phosphorylation occurred in response to the adenylate cyclase activator forskolin and the cyclic AMP analog dibutyryl cyclic AMP. An increase in TH phosphorylation was not observed in response to the D1-selective agonist SKF 38393. The D2-selective DA autoreceptor agonist pergolide decreased the phosphorylation of TH below basal levels and blocked the increase in phosphorylation elicited by 55 mM K+. The inhibitory effect of pergolide was antagonized by the D2-selective antagonist eticlopride. Changes observed in the phosphorylation of TH were mirrored by changes in tyrosine hydroxylation in situ. These observations support the hypothesis that a reduction in TH phosphorylation is the mechanism by which DA autoreceptors modulate tyrosine hydroxylation in nigrostriatal nerve terminals.  相似文献   

6.
The release of endogenous acetylcholine and dopamine and the appearance of their metabolites, choline and dihydroxyphenylacetic acid (DOPAC), from neostriatal slices prepared from Fischer 344 rats was examined under various experimental conditions. There was a dose-dependent increase in the amount of neurotransmitter or metabolite as the medium potassium concentration was increased from 5 to 50 mM. Over an eight minute period in Krebs Ringer bicarbonate buffer containing 25 mM potassium, the rate of release of acetylcholine was 6 to 13 times greater than that of dopamine. The dopamine endogenous to the slice preparation appeared to have little effect on the release of endogenous acetylcholine since manipulations that significantly altered dopamine release (depletion with 6-hydroxydopamine or uptake inhibition with nomifensine) had minimal effects on the cholinergic neurons. In contrast, increasing the endogenous acetylcholine in the preparation by inhibiting acetylcholinesterase resulted in a 1.2 to 12 fold increase in dopamine release depending upon the incubation time and the potassium concentration. These studies indicate that within the neostriatal slices there is minimal influence of the endogenous dopamine on the cholinergic neurons, whereas the extracellular acetylcholine can influence dopamine release when its concentration is increased by inhibition of acetylcholinesterase.  相似文献   

7.
The stimulatory effect of dopamine through dopamine D2 receptor on glucose-induced insulin secretion was studied in the pancreatic islets in vitro. Dopamine significantly stimulated insulin secretion at a concentration of 10-8 M in the presence of high glucose (20 mM). The higher concentrations of dopamine (10(-7)-10(-4)) inhibited glucose-induced insulin secretion in the presence of both 4 mM and 20 mM glucose. Stimulatory and inhibitory effect of dopamine on glucose-induced insulin secretion was reverted by the addition of dopamine D2 receptor antagonists such as butaclamol and sulpiride. Norepinephrine (NE) at 10(-4) M concentration inhibited the dopamine uptake as well as its stimulatory effect at 10(-8) M concentration on glucose induced insulin secretion. Our results suggest that dopamine exerts a differential effect on glucose-induced insulin secretion through dopamine D2 receptor and it is essential for the regulation of glucose-induced insulin secretion by pancreatic islets.  相似文献   

8.
Potassium chloride (25 mM) and (+)-amphetamine (100 microM) both stimulated the release of radioactivity from slices of substantia nigra preincubated with [3H]3,4-dihydroxyphenylethylamine [( 3H]dopamine). Potassium chloride (25 mM) released radioactivity from slices of both zona compacta and zona reticulata. Prior 6-hydroxydopamine (6-OHDA) lesions of one nigrostriatal pathway did not reduce the spontaneous release of radioactivity, or the potassium chloride- or amphetamine-induced release of radioactivity from slices of nigra ipsilateral to the lesion after preincubation with [3H]dopamine. The accumulation of radioactivity following incubation of nigral slices from 6-OHDA-lesioned animals with [3H]dopamine was increased when compared to uptake into slices from intact tissue. In synaptosomal preparations of striatum, nomifensine but not desipramine or fluoxetine inhibited [3H]dopamine uptake. In contrast, nomifensine, desipramine, and fluoxetine all inhibited [3H]dopamine uptake in nigral synaptosomal preparations. Following 6-OHDA lesions of one nigrostriatal pathway the uptake of [3H]dopamine into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was substantially decreased. In contrast, bilateral electrolesions of the dorsal and medial raphe nuclei reduced [3H]dopamine uptake into nigral preparations but not into striatal synaptosomes. The uptake of [3H]5-hydroxytryptamine ([3H]5-HT) into synaptosomal preparations of substantia nigra was abolished by fluoxetine and reduced by desipramine, but was unaffected by nomifensine. In contrast, fluoxetine, desipramine, and nomifensine all inhibited [3H]5-HT uptake into striatal synaptosomal preparations. Following 6-OHDA lesions of one nigro-striatal pathway the uptake of [3H]5-HT into nigral synaptosomal preparations was unchanged but uptake into striatal preparations was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
(1) The inhibition of potassium uptake by low concentration of norepinephrine (3 X 10-8 M) and of dibutyryl cyclic AMP (DBcAMP, 10 minus5 M) was studied in cardiac Purkyn? fibres. (2) The inhibitory action of DBcAMP on K uptake was abolished by the alpha blocker phentolamine. (3) Norepinephrine alone decreased K uptake and such inhibition was somewhat larger when DBcAMP was added. DBcAMP alone caused the usual decrease in K uptake but addition of norepinephrine abolished it. (4) The inhibition caused by norepinephrine reduced the increase in uptake caused by a high concentration (10 minus 3 M) of DBcAMP. (5) The inhibitory effect of norepinephrine was reversed in the presence of high concentration of magnesium (5.25 mM). (6) The inhibitory effect of norepinephrine was reversed by aminophylline and abolished by caffeine. (7) The inhibitory action of norepinephrine and BCcAMP was reversed or abolished, respectively, by imidazole. (8) It is concluded that the inhibition of potassium uptake by low concentration of DBcAMP is mediated by an alpha receptor mechanism and that possibly the "receptors" for this effect of norepinephrine and DBcAMP are located at different sites. Also it appears that DBcAMP may be acting at the membrane and that the action of methylxanthines and imidazole is not necessarily mediated only by a modification of phosphodiesterase activity.  相似文献   

10.
In rat striatal synaptosomes incubated with [14C]tyrosine, the evolution of 14CO2, taken as a measure of dopamine synthesis, was inhibited by exogenous dopamine and by the dopaminergic receptor agonist ADTN. The inhibition was not counteracted by dopaminergic receptor antagonists (haloperidol, sulpiride, pimozide or domperidone). Instead, it was prevented by dopamine uptake blockers, suggesting that dopamine and ADTN (a substrate of the dopamine carrier) acted once inside the nerve endings and not through activation of autoreceptors on their external membrane. The dopamine uptake inhibitors nomifensine, benztropine and cocaine increased 14CO2 evolution from incubated striatal synaptosomes. Depolarization with KCl also increased dopamine synthesis and this action was potentiated when the reuptake of the released catecholamine was prevented by carrier blockers. The rate of dopamine synthesis was lowered when synaptosomal dopamine was raised upon incubation with monoamine oxidase inhibitors or with l-DOPA. The inhibition was counteracted by dopamine reuptake blockers. The data suggest that dopamine synthesis in striatal nerve endings is under the inhibitory control of the transmitter recaptured following release.  相似文献   

11.
12.
We have examined the ability of a number of neuropeptides to increase tyrosine hydroxylase (TH) activity in the superior cervical ganglion in vitro. Secretin and vasoactive intestinal peptide (VIP) both increased TH activity, whereas angiotensin II, bombesin, bradykinin, cholecystokinin octapeptide, insulin, luteinizing hormone-releasing hormone, [D-Ala2, Met3]enkephalinamide, motilin, neurotensin, somatostatin, and substance P produced no effects. Secretin and VIP increased TH activity with an EC50 of 5 nM and 0.5 μM, respectively. The effects of these peptides were not altered by prior decentralization of the ganglia, by addition of hexamethonium (3 mM) and atropine (6 μM), or by lowering the concentration of calcium in the medium to 0.1 mM. Addition of carbachol (3 μM) potentiated the effects of both secretin and VIP on TH activity. Several gastrointestinal peptides with structural similarities to secretin and VIP were examined for their ability to increase TH activity. Glucagon, gastric inhibitory peptide and human pancreatic tumor growth hormone-releasing factor produced no effect at a concentration of 10 μM, while PHI increased enzyme activity.  相似文献   

13.
Release of endogenous dopamine (DA) from arcuate-periventricular nucleus-median eminence fragments has been analyzed in an in vitro static incubation system.Exposure of these hypothalamic fragments to increasing concentrations of K+ ions produced a dose-dependent release of endogenous DA. The highest rate of K+-stimulated DA efflux occurred in the first 10 minutes, thereafter it progressively decline reaching prestimulated levels at 30 minutes. If two consecutive depolarizing stimuli of 40 mM KCl were applied to the same hypothalamic fragment, after a 40 minutes rest period, an equivalent release of endogenous DA occurred. Removal of Ca++ ions from the incubation medium containing the Ca++ chelator EGTA caused a decrease of basal DA efflux and completely prevented the K+-induced release of DA.Furthermore when verapamil, a blocker of Ca++ entrance, was added to the incubation medium in a concentration of 50 μM, the K+-induced DA efflux was completely counteracted, whereas spontaneous release was unmodified.Finally nomifensine, a potent blocker of DA uptake, added in vitro in a final concentration of 10 μM, significantly reinforced K+-induced release of endogenous DA. Since nomifensine did not modify basal DA release, this study confirmed its prevalent uptake blocking property rather than its releasing action on DA.  相似文献   

14.
We have previously reported that intracerebroventricular administration of 6R-L-erythro-5,6,7,8-tetrahydrobiopterin (6R-BH4), a cofactor for tyrosine hydroxylase, enhances biosynthesis of 3,4-dihydroxyphenylethylamine (dopamine) in the rat brain. In the present study, we have more precisely examined the effects of 6R-BH4 on dopamine release in vivo from the rat striatum using brain microdialysis. The amount of dopamine collected in striatal dialysates was determined using HPLC with electrochemical detection after purification with an alumina batch method. When the striatum was dialyzed with Ringer solution containing various concentrations of 6R-BH4 (0.25, 0.5, and 1.0 mM), dopamine levels in striatal dialysates increased in a concentration-dependent manner. Biopterin had little effect on dopamine levels in dialysates. The 6R-BH4-induced increase in dopamine levels in dialysates was abolished after pretreatment with tetrodotoxin (50 microM) added to the perfusion fluid, but after pretreatment with nomifensine (100 mg/kg, intraperitoneal injection), an inhibitor of dopamine uptake mechanism, a larger increase was observed. After inhibition of tyrosine hydroxylase by pretreatment with alpha-methyl-p-tyrosine (250 mg/kg, intraperitoneal injection), most of the increase persisted. These results suggest that 6R-BH4 has a dopamine-releasing action, which is not dependent on biosynthesis of dopamine.  相似文献   

15.
The effects of 5-HT and glutamate on dopamine synthesis and release by striatal synaptosomes were investigated and compared with the action of acetylcholine, which acts presynaptically on this system. 5-HT inhibited (28%) synthesis of [14C]dopamine from L-[U-14C]tyrosine, at 10-5M and above. This contrasts with the action of acetylcholine, which stimulated [14C]-dopamine synthesis by 24% at 10-4 M. Tissue levels of GABA were unaffected by either 5-HT or acetylcholine up to concentrations of 10-4 M. The inhibitory action of 5-HT (5 × 10?5 M and 2 × 10?4 M) on [19C]dopamine synthesis was completely abolished by methysergide (2 × 10?6 M). Higher concentrations of methysergide (10?4 M) or cyproheptadine (10?5 M) inhibited [14C]dopamine synthesis by 28% and 25%, respectively, when added alone to synaptosomes. However, only methysergide prevented the further inhibition of synthesis caused by 5-HT. At concentrations of 2 × 10?5 M and above, 5-HT stimulated [14C]dopamine release. This releasing action differed from that of acetylcholine, which occurred at lower concentrations (e.g., 10?6 M). Methysergide (up to 10?4 M) or cyproheptadine (2 × 10?4 M) did not reduce the 5-HT (5 × 10?5 M)-induced release of [14C]dopamine, but methysergide (10?4 M) showed a potentiation (49%) of this increased release. The stimulatory effects of 5-HT (2 × 10?5 M) and K+ (56 mM) on [14C]dopamine release were additive, indicating that two separate mechanisms were involved. However, when both agents were present the stimulatory effect of K+ (56 mM) on [14C]dopamine synthesis was not seen above the inhibitory effect of 5-HT. Glutamate (0.1-5 mM) did not affect [4C]dopamine release or its synthesis from L-[U-14C]tyrosine. It is concluded that 5-HT modulates the synthesis of dopamine in striatal nerve terminals through a presynaptic receptor mechanism, an action antagonised by methysergide. The releasing action of 5-HT apparently occurs through a separate mechanism which is also distinct from that involved in the response to K+ depolarisation.  相似文献   

16.
Abstract: Serotonin (5-HT) administered at 1, 3, and 10 µ M into the striatum of halothane-anesthetized rats by in vivo microdialysis increased extracellular dopamine (DA) in a concentration-dependent manner (approximately 65, 190, and 440%, respectively). These effects were reduced by 50% in the presence of 1 µ M tetrodotoxin (TTX) or in the absence of Ca2+ ions. The DA uptake blocker nomifensine (0.1 µ M ) significantly lowered (by 50%) the enhancement of DA outflow induced by 3 µ M 5-HT. Nomifensine (1 µ M ) coperfused with 1 µ M TTX abolished the 1 and 3 µ M 5-HT-induced DA outflow, whereas the effect of 10 µ M 5-HT was significantly reduced by 1 (−55%) and 10 µ M (−70%) nomifensine. These data demonstrate that, in vivo, striatal DA uptake sites are partially involved in the DA-releasing action of 5-HT.  相似文献   

17.
The effect of high potassium, 60 mM KCl, on the cellular action of arginine vasopressin (AVP) was studied in rat renal papillary collecting tubule cells in culture. In the presence of 0.5 mM 3-isobutyl-1-methylxanthine AVP-induced cAMP production was enhanced by pretreatment of the cells with 60 mM KCl. Such an enhancement was not found in cells pretreated with Ca(2+)-free medium containing 1 mM EGTA or in Na(+)-free medium, which rather reduced AVP-induced cAMP production. Similar results were obtained with the blockers of cellular Ca2+ uptake, 1 x 10(-4) M verapamil and 1 x 10(-5) M nifedipine. The 60 mM KCl elevated the cellular sodium concentration ([Na+]i) from 15.1 to 18.8 mM, cellular pH (pHi) from 7.18 to 7.32, and basal cellular free calcium concentration ([Ca2+]i). These results indicate that high potassium promptly augments AVP-induced cAMP production in renal papillary collecting tubule cells. This effect is based on the alkalinized pHi and the increased [Ca2+]i.  相似文献   

18.
19.
Although epidermal growth factor (EGF) receptor (ErbB1) is implicated in Parkinson's disease and schizophrenia, the neurotrophic action of ErbB1 ligands on nigral dopaminergic neurons remains controversial. Here, we ascertained colocalization of ErbB1 and tyrosine hydroxylase (TH) immunoreactivity and then characterized the neurotrophic effects of ErbB1 ligands on this cell population. In mesencephalic culture, EGF and glial-derived neurotrophic factor (GDNF) similarly promoted survival and neurite elongation of dopaminergic neurons and dopamine uptake. The EGF-promoted dopamine uptake was not inhibited by GDNF-neutralizing antibody or TrkB-Fc, whereas EGF-neutralizing antibody fully blocked the neurotrophic activity of the conditioned medium that was prepared from EGF-stimulated mesencephalic cultures. The neurotrophic action of EGF was abolished by ErbB1 inhibitors and genetic disruption of erbB1 in culture. In vivo administration of ErbB1 inhibitors to rat neonates diminished TH and dopamine transporter (DAT) levels in the striatum and globus pallidus but not in the frontal cortex. In parallel, there was a reduction in the density of dopaminergic varicosities exhibiting intense TH immunoreactivity. In agreement, postnatal erbB1-deficient mice exhibited similar decreases in TH levels. Although neurotrophic supports to dopaminergic neurons are redundant, these results confirm that ErbB1 ligands contribute to the phenotypic and functional development of nigral dopaminergic neurons.  相似文献   

20.
多巴胺类似物对二氢蝶啶还原酶有明显的非竞争性抑制作用(Ki或I_(50)值为10~(-5)—10~(-6)mol/L)。其中阿朴吗啡是最强的抑制剂之一(Ki或I~(50)=1-2×10~(-6)mol/L)。由于酪氨酸羟化酶和二氢蝶啶还原酶包含于同一酶促反应过程中,且限制了多巴胺合成的决定速度的那一步。这些结果可能提示出被多巴胺抑制的酪氨酸羟化作用包含着对这二种酶的抑制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号