首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enantiomerically enriched pyrimidyl alkanol with either S or R configurations was obtained stochastically from the reaction between pyrimidine-5-carbaldehyde and diisopropylzinc in the presence of achiral silica gel in conjunction with asymmetric autocatalysis with amplification of chirality.  相似文献   

2.
The achiral hydrocarbon tetraphenylethylene crystallizes in enantiomorphous forms (chiral space group: P21) to afford right- and left-handed hemihedral crystals, which can be recognized by solid-state circular dichroism spectroscopic analysis. Chiral organic crystals of tetraphenylethylene mediated enantioselective addition of diisopropylzinc to pyrimidine-5-carbaldehyde to give, in conjunction with asymmetric autocatalysis with amplification of chirality, almost enantiomerically pure (S)- and (R)-5-pyrimidyl alkanols whose absolute configurations were controlled efficiently by the crystalline chirality of the tetraphenylethylene substrate. Tetrakis(p-chlorophenyl)ethylene and tetrakis(p-bromophenyl)ethylene also show chirality in the crystalline state, which can also act as a chiral substrate and induce enantioselectivity of diisopropylzinc addition to pyrimidine-5-carbaldehyde in asymmetric autocatalysis to give enantiomerically enriched 5-pyrimidyl alkanols with the absolute configuration correlated with that of the chiral crystals. Highly enantioselective synthesis has been achieved using chiral crystals composed of achiral hydrocarbons, tetraphenylethylenes, as chiral inducers. This chemical system enables significant amplification of the amount of chirality using spontaneously formed chiral crystals of achiral organic compounds as the seed for the chirality of asymmetric autocatalysis.  相似文献   

3.
Sato I  Yanagi T  Soai K 《Chirality》2002,14(2-3):166-168
2-Alkenyl- and 2-vinyl-5-pyrimidyl alkanols are highly enantioselective asymmetric autocatalysts with significant amplification of enantiomeric excess in the enantioselective addition of diisopropylzinc to 2-alkenyl- and 2-vinylpyrimidine-5-carbaldehydes. Consecutive asymmetric autocatalysis starting from 7% ee increases the ee of pyrimidyl alkanol up to 99% without the need for any other chiral auxillary.  相似文献   

4.
Biological enantioenriched chirality is a phenomenon that in living organisms, amino acids and carbohydrates typically have the same absolute configuration. Perhaps one of the earliest attempts to delineate the origins of this phenomenon was a theory known as asymmetric autocatalysis, a reaction in which the structures of the chiral catalyst and the product are the same, and in which the chiral product acts as a chiral catalyst for its own production. In theory, this would mean that small asymmetries in the product will propagate rapidly. However, autocatalysis also relies on the cross‐inhibition of chiral states, something that would not likely be possible on primordial Earth. But recently, theories on asymmetric autocatalysis have begun to resurface as more recent findings indicate that other mechanisms exist to stabilize the homochiral states. In this study, I propose an autocatalytic cycle, and using density functional theory, prove that (1) it is plausible on primordial Earth, and (2) it propagates arbitrary asymmetries in proline. Thus, facilitating asymmetry in proline and allowing access to a wide variety of asymmetric proline‐catalyzed reactions, including those involved in the synthesis of amino acids and carbohydrates from achiral precursors.  相似文献   

5.
Many molecules which are achiral can crystallize in chiral (enantiomorphic) crystals and, under suitable conditions, crystals of only one chirality may be obtained. The formation of right- or left-handed crystals in excess is equally probable. Lattice-controlled (topochemical) photochemical or thermal solid-state reactions may then afford stable, optically active products. In the presence of the chiral products, achiral reactants may preferentially produce crystals of one chirality, leading to a feedback mechanism for the generation and amplification of optical activity. Amplification of optical activity can also be achieved by solid-state reactions. The optical synthesis of biologically relevant compounds by such routes may be envisaged.  相似文献   

6.
Kang J  Lee JH  Kim JB  Kim GJ 《Chirality》2000,12(5-6):378-382
Asymmetric modular synthesis of air-stable ferrocenyl bisphosphine ligands with cylindrical chirality was achieved employing asymmetric catalytic methods and these chiral ligands were screened in asymmetric hydroboration reaction.  相似文献   

7.
Sodium chlorate is an achiral molecule that crystallizes from water in the chiral space group P2(1)3. In the absence of chiral perturbations, a random distribution of (+) and (-) crystals is obtained. Kondepudi(2) has shown that constantly stirring an evaporating NaClO(3) solution gives mostly either (+) or (-) crystals. Repeating this experiment many times gives equal numbers of (+) and (-) sets of crystals. Herein we report that when evaporating aqueous NaClO(3) is subjected to beta particles from an Sr-90 source, an asymmetric distribution of (+) and (-) crystals favoring the (+) crystals is obtained. The beta particles are energetic polarized electrons that are approximately 80% of left-handed helicity. By a poorly understood mechanism, the spin polarized electrons produce chiral nucleating sites that favor formation of the (+)-NaClO(3) crystals. Exposure of the evaporating solution instead to energetic positrons from an Na-22 source yields mainly (-)-NaClO(3) crystals. Polarized positrons are of predominantly right-handed helicity. One may conclude that the chirality of the radiation is correlated with the chirality of the crystals being generated.  相似文献   

8.
The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction.  相似文献   

9.
Asymmetric amplification is a phenomenon in which the enantiomeric excess (ee) of a product is higher than that of a chiral auxiliary for a catalyst. We analyzed the mechanism of asymmetric amplification observed in the addition of diethylzinc (Et(2)Zn) to benzaldehyde (PhCHO) to synthesize 1-phenyl-1-propanol in the presence of trans-1,2-diaminocyclohexane bistriflamide (DCBF) and titanium tetraisopropoxide (TIOP). In a manner similar to the reaction in which 1-piperidino-3,3-dimethyl-2-butanol is a chiral auxiliary for the catalyst, when asymmetric amplification was observed, the ee of the product varied as the reaction progressed. The mechanisms of variation in ee in the two reactions, however, were different. No asymmetric amplification was observed when TIOP and PhCHO were added to a mixture of DCBF and Et(2)Zn, while the ee of the product was always higher than that of DCBF when PhCHO and Et(2)Zn were added to a mixture of DCBF and TIOP. In the latter case, the product ee decreased as the reaction progressed. The results indicate that DCBF forms inactive heterochiral complex causing an increase in the ee of DCBF in the solution, which is the chiral auxiliary for the catalyst. But the complex is not very stable and gradually dissociates due to the reaction with Et(2)Zn. As a result, the asymmetric amplification decreases as the reaction progresses.  相似文献   

10.
From achiral imidazolinium salts, chiral transition metal complexes containing an N-heterocyclic carbene (NHC) ligand were prepared (metal = palladium, copper, silver, gold, rhodium). Axial chirality in these complexes results from the formation of the metal-carbene bond leading to the restriction of rotation of dissymmetric N-aryl substituents about the C–N bond. When these complexes exhibited a sufficient configurational stability, a resolution by chiral high-performance liquid chromatography (HPLC) on preparative scale enabled isolation of enantiomers with excellent enantiopurities (>99% ee) and good yields. A study of the enantiomerization barriers revealed the effect of the backbone nature as well as the type of transition metal on its values. Nevertheless, the evaluation of palladium-based complexes in asymmetric intramolecular α-arylation of amides demonstrated that the ability to induce an enantioselectivity cannot be correlated to the configurational stability of the precatalysts.  相似文献   

11.
Xiao D  Wada T  Inoue Y 《Chirality》2009,21(1):110-113
In order to understand the roles of moderately organized media and the factors controlling the chirality transfer in supramolecular photochirogenesis, enantiodifferentiating photoisomerization of (Z)-cyclooctene to the chiral (E)-isomer (1E) has been performed for the first time in liquid crystal (LC) systems such as lyotropic LCs of poly(gamma-benzyl-L-glutamate) (PBLG), difluorobenzene derivatives mixture, and thermotropic cholesteryl oleyl carbonate LCs. Basically, the as-employed LCs provided small enantiomer excess (<5%). It is interesting that lyotropic PBLG LCs give contrasting results in cholesteric and nematic mesophases, revealing the importance of the relevant mesophase structure of LC. Selective excitation in achiral difluorobenzene LC doped with a chiral sensitizer facilitates us to conclude that the LC's chiral spatial arrangement is not sufficient or suitable to induce appreciable enantiomeric excess (ee) in the product, but the existence of molecular chirality (of a chiral sensitizer) is essential to afford an optically active (nonracemic) product at least in the present photosensitization system. The photosensitizations in thermotropic LCs further reveal that the product's ee can be manipulated by the LC mesophase not directly but through the sensitizer's conformational changes induced by the supramolecular interactions with the surrounding LC structure.  相似文献   

12.
One‐handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix‐sense‐selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main‐chain chirality based on the one‐handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction. Chirality 27:454–458, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Under neutral conditions, spontaneous mirror symmetry breaking has been occasionally reported for aldol reactions starting from achiral reagents and conditions. Chiral induction might be interpreted in terms of autocatalysis exerted by chiral mono‐aldol or bis‐aldol products as source of initial enantiomeric excesses, which may account for such experimental observations. We describe here a thorough Density Functional Theory (DFT) study on this complex and otherwise difficult problem, which provides some insights into this phenomenon. The picture adds further rationale to an in‐depth analysis by Moyano et al, who showed the isolation and characterization of bis‐aldol adducts and their participation in a complex network of reversible steps. However, the lack of enantiodiscrimination (ees vanish rapidly in solution) suggests, according to the present results, a weak association in complexes formed by the catalysts and substrates. The latter would also be consistent with almost flat transition states having similar heights for competitive catalyst‐bound transition structures (actually, we were unable to locate them at the level explored). Overall, neither autocatalysis as once conjectured nor mutual inhibition of enantiomers appears to be operating mechanisms. Asymmetric amplification in early stages harnessing unavoidable enantiomeric imbalances in reaction mixtures of chiral products represents a plausible interpretation.  相似文献   

14.
Novel optically active carbon anionic initiators bearing a chiral oxazole substituent on fluorene ring, (S)‐1‐(9H‐fluoren‐2‐yl)‐4‐isopropyl‐4, 5‐dihydrooxazole lithium ((S)‐1‐FIDD‐Li) and (S)‐2‐(9H‐fluoren‐2‐yl)‐4‐isopropyl‐4, 5‐dihydrooxazole lithium ((S)‐2‐FIDD‐Li), were synthesized. Anionic polymerizations of achiral polyisocyanates with the chiral initiators were investigated and optical rotation of the obtained polymers were attributed to asymmetric induction of the chiral initiators. The crowded substituent of initiator ((S)‐2‐FIDD‐Li) seems to reduce the polymerizability of isocyanates and yet enhances the chiral induced ability in polymerization. Chirality 27:449–453, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
Experimental and kinetic analysis of a chemical system combines autocatalytic amplification of 2-alkynyl-5-pyrimidyl alkanol 2 and 6-alkynyl-3-pyridyl akanol 4 in which 2 acts as a chiral trigger and 4 being the subsequent autocatalyst. Starting from a very low initial ee, both alkanols are produced with high enantiopurity in one single cycle. This provides insight into a dual nonlinear amplification of chirality observed with amplifying trigger 2 and accelerated amplification of autocatalyst 4 . These kinetic studies reveal a five-fold magnitude superior amplification rates of 4 associated with trigger's enantiopurity at the outset.  相似文献   

16.
17.
The achiral syn conformer (face-to-face) of the ethane-bridged bis(zinc porphyrin) (syn-ZnD) transforms into the corresponding chiral extended anti bis-ligated species (anti-ZnD.L2) in the presence of enantiopure ligands (L: amino acid derivatives). The mechanism of the supramolecular chirality induction is based on chiral ligand binding to zinc porphyrins and subsequent formation of either right- or left-handed screw structures in anti-ZnD.L2. The screw structure formation arises from steric interactions between the bulkiest substituent at the asymmetric carbon of the ligand and the peripheral ethyl groups of the neighboring porphyrin ring directed towards the covalent bridge. The sign and amplitude of the induced circular dichroism (CD) are dependent on the steric bulk of the substituents at the chiral center. The greater difference in size between the chiral center's substituents gives the stronger induced CD signal. Rationalization of the ligand bulkiness effect on chirality induction by amino acid derivatives, application of this supramolecular system for the determination of ligand absolute configuration, and relative bulkiness of the substituents at the asymmetric carbon are discussed.  相似文献   

18.
A synergetic law, being of common physicochemical and biological sense, is formulated: any evolving system that possesses an excess of free energy and elements with chiral asymmetry, while being within one hierarchical level, is able to change the type of symmetry in the process of self-organization increasing its complexity but preserving the sign of prevailing chirality (left — L or right — D twist). The same system tends to form spontaneously a sequence of hierarchical levels with alternating chirality signs of de novo formed structures and with an increase of the structures’ relative scales. In living systems, the hierarchy of conjugated levels of macromolecular structures that begins from the “lowest” asymmetric carbon serves as an anti-entropic factor as well as the structural basis of “selected mechanical degrees of freedom” in molecular machines. During transition of DNA to a higher level of structural and functional organization, regular alterations of the chirality sign D-L-D-L and L-D-L-D for DNA and protein structures, respectively, are observed. Sign-alternating chiral hierarchies of DNA and protein structure, in turn, form a complementary conjugated chiral pair that represents an achiral invariant that “consummates” the molecular-biological block of living systems. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development though a series of chiral bifurcations. The hierarchy of macromolecular structures demarcated by the chirality sign predetermined the possibility of the “block” character of biological evolution.  相似文献   

19.
Shi M  Liu YH  Chen LH 《Chirality》2007,19(2):124-128
In the Morita-Baylis-Hillman (MBH) reactions of arylaldehydes with methyl vinyl ketone, it was observed that in the presence of a catalytic amount of a chiral phosphine Lewis base (CPLB) bearing multiple phenol groups, such as CPLB1 (10 mol %), the corresponding MBH adducts could be obtained in moderate to good yields with low to moderate ee's (4-45% ee) at ambient temperature (10 degrees C) in THF.  相似文献   

20.
Gehring T  Busch M  Schlageter M  Weingand D 《Chirality》2010,22(Z1):E173-E182
The Soai reaction amplifies small enantiomeric excesses in a spectacular manner. Being known for 20 years, it has drawn the attention of many scientists in different fields as it is to date the only chemical reaction offering the chance to study the phenomenon of asymmetric autocatalysis in conjunction with high amplification of enantiomeric excess (ee). This mini-review comprises an introduction to the discovery of asymmetric autocatalysis with amplification of ee and a concise summary of published experimental results showing which starting materials and reaction parameters play an important role in this reaction and which influences are understood. It is addressed especially to scientists entering the field of the Soai reaction to get a quick overview of important aspects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号