首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Dental implants made of functionally graded biomaterials (FGBM) have been receiving increasing attention due to their unique advantage of being able to simultaneously satisfy biocompatibility, strength, corrosion resistance, etc., which a single composition with a uniform structure cannot satisfy. This paper investigates the biomechanical behavior of a threaded FGBM dental implant/surrounding bone system under static and harmonic occlusal forces by using a three-dimensional finite element method. The implant is a mixture of a bioceramic and a biometal with a smooth gradient in both the material composition and properties in the longitudinal direction. The interaction of the implant and the supporting bone tissues is considered. Three contact conditions at the implant-bone interface are used to model different osseointegration stages. A comprehensive parametric study is conducted to highlight the influence of the material properties, the volume fraction index, the occlusal force orientation, and the osseointegration quality on the maximum von-Mises stress, deformation distribution, natural frequencies, and harmonic response.  相似文献   

2.
The assessment of the behavior of immediately loaded dental implants using biomechanical methods is of particular importance. The primary goal of this investigation is to optimize the function of the implants to serve for immediate loading. Animal experiments on reindeer antlers as a novel animal model will serve for investigation of the bone remodeling processes in the implant bed. The main interest is directed towards the time and loading-dependant behavior of the antler tissue around the implants. The aim and scope of this work was to design an autonomous loading device that has the ability to load an inserted implant in the antler with predefined occlusal forces for predetermined time protocols. The mechanical part of the device can be attached to the antler and is capable of cyclically loading the implant with forces of up to 100 N. For the calibration and testing of the loading device a biomechanical measuring system has been used. The calibration curve shows a logarithmic relationship between force and motor current and is used to control the force on the implant. A first test on a cast reindeer antler was performed successfully.  相似文献   

3.
《IRBM》2022,43(5):372-379
ObjectivesThis study aims to evaluate the fatigue stress around custom-made all-on-4 implants system to find out which type of implants have a better performance under different graded multidirectional occlusal forces.Material and methods3D normal and implanted models simulating the “All-on-4” concept were created and analyzed under three different conditions of occlusal loadings. Two types of static and fatigue were applied. Stress distribution was analyzed based on von Mises and Goodman theories in ANSYS environment in addition to the safety factor. Statistical tests were performed to assess the significance of the results as well as the reproducibility of the results.ResultsThe results showed stress increasing reaching a value of 48%, 29% in tilted implants compared to vertical implants and normal cases respectively. In contrast, tilted implants appeared to be less stable (safety factor may reach 0.7) and they may fail during the application of occlusal forces. The safety factor of cortical bone decreased by about 91% in the implanted model compared to the normal model, indicating a higher possibility of bone remodeling around the bone.ConclusionThe orientation and position of occlusal forces had an important influence on stress distribution between the implant and the surrounding bone, and fatigue loading caused greater stresses in comparison with static loading. Lower amounts of stress were found in the vertical implants, ensuring a higher safety factor and a longer clinical service. In contrast, the critical safety factor values are observed in tilted implants, which may fail under the influence of applied occlusal forces.  相似文献   

4.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   

5.
Many unsolved problems in dental implant research concern the interfacial stress distributions between the implant components, as well as between the implant surface and contacting bone. To obtain a mechanical understanding of how vertical and horizontal occlusal forces are distributed in this context, it is crucial to develop in vitro testing systems to measure the force transmission between dental implants and attached prostheses. A new approach to such testing, involving a robotic system, is described in this investigation. The system has been designed to produce simulated mandibular movements and occlusal contact forces so that various implant designs and procedures can be thoroughly tested and evaluated before animal testing or human clinical trials. Two commonly used fixed prosthesis designs used to connect an implant and a tooth, a rigid connection and a nonrigid connection, were fabricated and used for experimental verification. The displacement and force distributions generated during simulated chewing activities were measured in vitro. Force levels, potentially harmful to human bone surrounding the connected dental implant and tooth, were analyzed. These results are useful in the design of prostheses and connecting components that will reduce failures and limit stress transfer to the implant/bone interface.  相似文献   

6.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

7.
The aim of this study was to investigate the interactions of implant position, implant–abutment connection and loading condition influencing bone loss of an implant placed in the maxilla using finite element (FE) analysis and mathematical bone remodeling theory. The maxilla section contours were acquired using CT images to construct FE models containing RS (internal retaining-screw) and the TIS (taper integrated screwed-in) implants placed in SC (along the axis of occlusal force) and RA (along the axis of residual ridge) positions. The adaptive strain energy density (SED) algorithm was combined with FE approach to study the preliminary bone remodeling around implant systems under different load conditions. The simulated results showed that the implant position obviously influenced the bone loss. An implant placed in the RA position resulted in substantially increased bone loss. Implant receiving a lateral load slightly increased bone loss compared with an axial load. The implant type did not significantly influence bone loss. It was found that buccal site suffered the most bone loss around the implant, followed by distal, lingual and mesial sites. The implant position primarily influenced bone loss and it was found most obviously at the buccal site. Implant placed along the axial load direction of a proposed prosthesis could obtain less bone loss around the implant. Attaining proper occlusal adjustments to reduce the lateral occlusal force is recommended in implant–bone–prosthesis system. Abutments of internal engagement with or without taper-fit did not affect the bone loss in the surrounding bone.  相似文献   

8.
ObjectivesThe aim of the present study is to evaluate, in a ligature-induced peri-implantitis model, the efficacy of three antimicrobial glassy coatings in the prevention of biofilm formation, intrasulcular bacterial growth and the resulting peri-implant bone loss.MethodsMandibular premolars were bilaterally extracted from five beagle dogs. Four dental implants were inserted on each hemiarch. Eight weeks after, one control zirconia abutment and three with different bactericidal coatings (G1n-Ag, ZnO35, G3) were connected. After a plaque control period, bacterial accumulation was allowed and biofilm formation on abutments was observed by Scanning Electron Microscopy (SEM). Peri-implantitis was induced by cotton ligatures. Microbial samples and peri-implant crestal bone levels of all implant sites were obtained before, during and after the breakdown period.ResultsDuring experimental induce peri-implantitis: colony forming units counts from intrasulcular microbial samples at implants with G1n-Ag coated abutment remained close to the basal inoculum; G3 and ZnO35 coatings showed similar low counts; and anaerobic bacterias counts at control abutments exhibited a logarithmic increase by more than 2. Bone loss during passive breakdown period was no statistically significant. Additional bone loss occurred during ligature-induce breakdown: 0.71 (SD 0.48) at G3 coating, 0.57 (SD 0.36) at ZnO35 coating, 0.74 (SD 0.47) at G1n-Ag coating, and 1.29 (SD 0.45) at control abutments; and statistically significant differences (p<0.001) were found. The lowest bone loss at the end of the experiment was exhibited by implants dressing G3 coated abutments (mean 2.1; SD 0.42).SignificanceAntimicrobial glassy coatings could be a useful tool to ward off, diminish or delay peri-implantitis progression.  相似文献   

9.
Computer-aided design/computer-aided manufacturing (CAD/CAM) custom abutments have been attracting more and more attention due to their advantages of accuracy fit and esthetic emergence profile. However, the CAD key technology for custom abutments has been seldom studied as well as their biomechanical behavior. This paper explored a novel method to design a CAD/CAM custom angled abutment, evaluated the biomechanical performance of the whole system and compared the difference between the custom and the conventional abutment through 3D nonlinear finite element analysis (FEA). Firstly, the digital data of the dental casts at the healing abutment level was acquired by optical scanner. Thus the position of the healing abutment and the implant can be determined by CAD technology. The custom angled abutment was then designed according to the need of restoration and esthetics with CAD software. The described system can eliminate wax and cast, create an esthetic anatomical emergence profile and provide a satisfactory angle correction. Simulation results indicate that there was no distinct difference in the stress distribution and magnitude of implant-bone interface and screw using the custom or the conventional angled abutment.  相似文献   

10.
Dental implants have to be placed with the long axis in different angulations due to the change in bone morphology. The objective of this study was to investigate the different bone remodeling response induced by the tilted dental implants and to assess whether it could lead to bone loss and implant failure. In this study, bone remodeling due to palato-labially inclined dental implants placed in the anterior maxillary incisor region was simulated. CT-based finite element models of a maxillary bone with dental implants were created herein. Five dental implants were placed at \(+10^{\circ }\), \(+5^{\circ }\), \(0^{\circ }\), \(-5^{\circ }\) and \(-10^{\circ }\), respectively. The remodeling progression was recorded and compared. Model \(-10^{\circ }\) (palatal side) shows the highest bone density values, but the inclined implant at \(+10^{\circ }\) (labial side) leads to significant bone loss. From a biomechanical perspective, it is speculated that a palatally inclined implant is more likely to enhance the bone density in the maxillary anterior region, but labial inclination of implant could jeopardize its stability.  相似文献   

11.
This cross-sectional study aimed to identify and quantify up to 42 target species colonizing the early biofilm of dental implants restored with titanium or zirconia abutments. A total of 720 samples from 20 healthy individuals were investigated. Biofilm samples were collected from the peri-implant sulci, inner parts of implants, abutment surfaces and prosthetic crowns over a functioning period of 30 days. Checkerboard DNA–DNA hybridization was used for microbial detection and quantitation. Clinical characteristics (probing depth, bleeding on probing, clinical attachment level and marginal bone loss) were also investigated during the monitoring period. Genome counts were low at the implant loading time point for both the abutment materials, and increased over time. Both the titanium and the zirconia groups presented similar microbial counts and diversity over time, and the microbiota was very similar to that colonizing the remaining teeth. Clinical findings were consistent with a healthy condition with no significant difference regarding marginal bone loss between the two materials.  相似文献   

12.
《Endocrine practice》2021,27(11):1114-1118
ObjectiveTo evaluate the significance of antithyroglobulin and antithyroid peroxidase antibody levels associated with locoregional metastatic disease in patients with well-differentiated thyroid cancer.MethodsPatients underwent initial treatment for well-differentiated thyroid cancer at our institution between 2014 and 2018. The following variables were collected: age, sex, pre-operative thyroid-stimulating hormone, thyroglobulin, antithyroglobulin antibody (TgAb), antithyroid peroxidase antibody (TPOAb), the extent of surgery, T-stage, N-stage, extrathyroidal extension (ETE), extranodal extension (ENE), lymphovascular invasion, and multifocal disease. The relationships between disease status and pre-operative TPOAb, TgAb, thyroglobulin, and thyroid-stimulating hormone were analyzed.ResultsA total of 405 patients (mean age, 52 years) were included in the study, of which 66.4% were women. Elevated TgAb was associated with the presence of lymph node metastases (LNM) in both the central and lateral neck (P < .01), with a stronger correlation to N1b versus N1a disease (P = .03). The presence of ETE was inversely related to the TgAb titer (P = .03). TPOAb was associated with a lower T-stage (P = .04), fewer LNM (P = .04), and a lower likelihood of ETE (P = .02). From multivariable analysis, TgAb ≥40 IU/mL was an independent predictive factor for a higher N-stage (P < .01 for N0 vs N1; P = .01 for N1a vs N1b), and ENE (P < .01). TPOAb ≥60 IU/mL was associated with a lower T-stage (P = .04 for T <3) and absence of ETE (P = .01).ConclusionElevated pre-operative TgAb was an independent predictor of nodal metastases and ENE, while elevated TPOAb was associated with a lower pathologic T- and N-stage. Pre-operative antithyroid antibody titers may be useful to inform the disease extent and features.  相似文献   

13.

Background  

Most dental implant systems are presently made of two pieces: the implant itself and the abutment. The connection tightness between those two pieces is a key point to prevent bacterial proliferation, tissue inflammation and bone loss. The leak has been previously estimated by microbial, color tracer and endotoxin percolation.  相似文献   

14.
Implant dimensions greatly influence load transfer characteristics and the lifetime of a dental system. Excessive stresses at peri-implant area may result in bone failure. Finding the critical point at the implant–bone interface and evaluating the influence of implant diameter-to-length ratio on adjacent bone stresses makes it possible to select implant dimensions. For this, different cylindrical implants were numerically analysed using geometrical models generated from computed tomography images of mandible with osseointegrated implants. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in its natural direction, oblique to occlusal plane. Maximum von Mises stresses were located around the implant neck at the critical point of its intersection with the plane of loading and were functions of implant diameter-to-length ratio. It was demonstrated that there exists a certain spectrum of diameter-to-length ratios, which will keep maximum bone stresses at a preset level chosen in accordance with patient's bone strength.  相似文献   

15.
16.
The objective of this study was to predict time-dependent bone remodeling around tissue- and bone-level dental implants used in patients with reduced bone width. The remodeling of bone around titanium tissue-level, and titanium and titanium–zirconium alloy bone-level implants was studied under 100 N oblique load for one month by implementing the Stanford theory into three-dimensional finite element models. Maximum principal stress, minimum principal stress, and strain energy density in peri-implant bone and displacement in x- and y- axes of the implant were evaluated. Maximum and minimum principal stresses around tissue-level implant were higher than bone-level implants and both bone-level implants experienced comparable stresses. Total strain energy density in bone around titanium implants slightly decreased during the first two weeks of loading followed by a recovery, and the titanium–zirconium implant showed minor changes in the axial plane. Total strain energy density changes in the loading and contralateral sides were higher in tissue-level implant than other implants in the cortical bone at the horizontal plane. The displacement values of the implants were almost constant over time. Tissue-level implants were associated with higher stresses than bone-level implants. The time-dependent biomechanical outcome of titanium–zirconium alloy bone-level implant was comparable to the titanium implant.  相似文献   

17.
徐国皓  谷方  孙红丽  李婷  杨建军 《生物磁学》2013,(10):1878-1882
目的:应用三维有限元分析法研究牙种植体过盈植入对种植体-骨界面接触压力的影响。方法:选择直径为3.3 mm的ITI种植体和成人离体下颌骨,模拟种植体植入下颌骨内,过盈量为0.5 mm,建立三维有限元模型,应用ANSYS软件分析种植体-骨界面的应力分布情况。结果:种植体周围骨最大应力为48.796 MPa,应力分布均匀。种植体所受应力主要集中于颈部,最大应力值为87.832 MPa。结论:过盈量为0.5 mm时,种植体-骨界面所产生的应力值在骨组织所能承受的最大应力值范围内,种植体所受到的应力值远远小于钛的屈服强度,从生物力学角度,周围骨所受应力在骨组织能够承受范围,种植体也不会断裂,过盈联结在临床种植时有其可行性。  相似文献   

18.
Lower survival rates were observed for the implant placed in the anterior maxilla. The purpose of this study was to investigate the influence of different implant lengths on the stress distribution around osseointegrated implants under a static loading condition in the anterior maxilla using a three-dimensional finite element analysis. The diameter of 4.0 mm external type implants of different lengths (8.5 mm, 10.0 mm, 11.5 mm, 13.0 mm, 15.0 mm) was used in this study. The anterior maxilla was assumed to be D3 bone quality. All the material was assumed to be homogenous, isotropic and linearly elastic. The implant–bone interface was constructed using a rigid element for simulating the osseointegrated condition. Then, 176 N of static force was applied on the middle of the palatoincisal line angle of the abutment at a 120°angle to the long axis of abutment. The von Mises stress value was measured with an interval of 0.25 mm along the bone–implant interface. Incremental increase in implant length causes a gradual reduction of maximum and average von Mises stress at the labial portion within the implant. In the bone, higher stress was concentrated within cortical bone area and more distributed at the labial cortex, while cancellous bone showed relatively low stress concentration and even distribution. An increase in implant length reduced stress gradients at the cortical peri-implant region. Implant length affects the mechanisms of load transmission to the osseointegrated implant. On the basis of this study the biomechanical stress-based performance of implants placed in the anterior maxilla improves when using longer implants.  相似文献   

19.
BackgroundThe biomechanical characteristics of midshaft clavicular fractures treated with titanium elastic nail (TEN) is unclear. This study aimed to present a biomechanical finite element analysis of biomechanical characteristics involved in TEN fixation and reconstruction plate fixation for midshaft clavicular fractures.MethodsFinite element models of the intact clavicle and of midshaft clavicular fractures fixed with TEN and with a reconstruction plate were built. The distal clavicle displacement, peak stress, and stress distribution on the 3 finite element models were calculated under the axial compression and cantilever bending.ResultsIn both loading configurations, TEN generated the highest displacement of the distal clavicle, followed by the intact clavicle and the reconstruction plate. TEN showed higher peak bone and implant stresses, and is more likely to fail in both loading configurations compared with the reconstruction plate. TEN led to a stress distribution similar to that of the intact clavicle in both loading configurations, whereas the stress distribution with the reconstruction plate was nonphysiological in cantilever bending.ConclusionsTEN is generally preferable for treating simple displaced fractures of the midshaft clavicle, because it showed a stress distribution similar to the intact clavicle. However, TEN provides less stability, and excessive exercise of and weight bearing on the ipsilateral shoulder should be avoided in the early postoperative period. Fixation with a reconstruction plate was more stable but showed obvious stress shielding. Therefore, for patients with a demand for early return to activity, reconstruction plate fixation may be preferred.  相似文献   

20.
目的:制作氧化锆基台并将其与钛基台的抗折强度相比较,从而探讨其临床应用的可行性。方法:选用纳米氧化锆粉,采用冷等静压成型和二次烧结工艺制作0sstem USⅡ系统氧化锆基台;选取氧化锆基台和成品钛基台(OSSTEM公司,韩国)各10枚,分别与0sstem USⅡ种植体装配,然后固定于不锈钢夹具中置于万能试验机,将万能试验机压头与种植体长轴成90°角施加压力,记录基台损坏时的加载力值,比较分析两组试件的强度差异。结果:氧化锆基台和钛基台的平均抗折强度分别为(540.5±84.6)N和(753.9±160.8)N,差别有统计学意义(P〈0.05)。氧化锆基台组10枚基台全部颈部折裂;钛基台组2枚种植体损坏,6枚中央固位螺钉损坏,2枚基台颈部折裂。结论:本研究制作的0sstem USⅡ系统的氧化锆基台的抗折强度虽然低于钛基台,但尚能满足临床应用要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号