首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The molecular weights, subunit dissociation, and conformation in solution of the hemocyanins of three species of octopi were investigated by light-scattering, ultracentrifugation, absorbance, and circular dichroism methods. The molecular weights of the hemocyanins of Octopus bimaculoides, Octopus bimaculatus, and Octopus rubescens obtained by light scattering were 3.3 X 10(6), 3.4 X 10(6), and 3.5 (+/- 0.3) X 10(6), respectively. The average molecular weights of the fully dissociated hemocyanins of the same octopi, investigated at alkaline pH and in the presence of 8 M urea and 6 M guanidinium chloride (GdmCl), were found to be close to one-tenth of those of the parent proteins, with average molecular masses of 3.4 X 10(5), 3.3 X 10(5), and 3.3 (+/- 0.3) X 10(5). These findings confirm the earlier observations of van Holde and co-workers with other cephalopod hemocyanins that the basic cylindrical assembly of molluscan hemocyanins consists of 10 subunits. Circular dichroism and absorbance measurements suggest that the dissociated subunits at alkaline pH and in concentrated urea solutions retain their native, multidomain folding. Fairly concentrated GdmCl above 3-4 M is necessary to unfold fully the dissociated hemocyanin chains. Molecular weight measurements studied as a function of reagent concentration with the urea and Hofmeister salt series as dissociating agents show that the ureas are very effective dissociating agents, while the salts are ineffective to moderately effective reagents for octopus hemocyanin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. The hemocyanin from the marine snail, Fasciolaria tulipa has a molecular weight of 8.6 +/- 0.6 x 10(6) determined by light-scattering and a sedimentation constant of (105.9 +/- 1.1)S. 2. The dissociated subunits at pH 11 and in 8.0 M urea (pH 7.4) had molecular weights of 4.4 x 10(5) and 4.7 x 10(5), close to one-twentieth of the parent didecameric assembly. 3. The pH dependence of the molecular weight profile exhibited bell-shaped transitions in both the presence and absence of Ca2+ and Mg2+ ions. In the physiological pH range of about 7.5-8.2 in divalent ion-containing buffers neither the molecular weight behavior nor the sedimentation patterns suggest any significant dissociation. 4. Both the urea and the Hofmeister salt series were found to dissociate the didecameric hemocyanin assembly. The ureas exhibit increasing effectiveness as dissociating agents with the higher alkyl substituted members of the series, suggesting hydrophobic stabilization of the subunit assembly. 5. Denaturation of the hemocyanin subunits by the urea series follows the same trend in effectiveness as the dissociation reaction; the reagent concentrations required to cause unfolding of the globular domains of the hemocyanin chains were, however, much higher than those needed for dissociation.  相似文献   

3.
The subunit structure and solution conformation of the hemocyanin of the chiton Acanthopleura granulata were investigated by light-scattering, ultracentrifugation, viscosity, absorbance, and circular dichroism methods. The molecular weight, determined by light scattering at pH 7.4 in the presence of 0.05 M Mg2+ and 0.01 M Ca2+, was (4.2 +/- 0.3) X 10(6), while those of dissociated subunits in the presence of 8.0 M urea (at pH 7.4) and at pH 10.7 were found to be 4.57 X 10(5) and 4.58 X 10(5), respectively. Circular dichroism and absorbance measurements at 222 and 346 nm indicate only minor changes in the conformation of the folded domains of the hemocyanin subunits in these dissociating solvents. As with the hemocyanins of the snails Busycon canaliculatum, Lunatia heros, and Littorina littorea, exposure to 4.0-6.0 M guanidinium chloride (GdmCl) is found to produce unfolding of the domains, resulting in much more pronounced spectral changes and a further drop in molecular weight. A Mw of 3.2 X 10(5) was obtained with Acanthopleura hemocyanin in 6.0 M GdmCl, suggesting hidden breaks in the polypeptide chains analogous to those observed with the gastropodan hemocyanins. Both urea and pH dissociation showed gradual declines in the molecular weights, consistent with a decamer-dimer-monomer scheme of subunit dissociation. The bell-shaped molecular weight profiles obtained in the pH region from 5 to 11 can be accounted for by assuming two proton-linked groups per dimer, characterized by apparent pK values of 5.5 and 9.5, and the further involvement of five to eight acidic and five to eight basic groups per monomer, having apparent pK values of 5.0 and 10.2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
1. The hemocyanin of the bivalve, Yoldia limatula (Say) was found by light-scattering to have a mol. wt of 8.0 +/- 0.6 x 10(6). Mass measurements by scanning transmission electron microscopy (STEM) gave a particle mass of 8.25 +/- 0.42 x 10(6) for the native particle and 4.09 +/- 0.20 x 10(6) for the half-molecule. 2. The hemocyanin subunits fully dissociated in 8.0 M urea and 6.0 M GdmCl at pH 8.0, and at pH 11.0, 0.01 M EDTA have mol. wts of 4.38 x 10(5), 4.22 x 10(5) and 4.71 x 10(5), close to one-twentieth of the parent molecular weight of Y. limatula hemocyanin and most gastropod hemocyanins. 3. Analyses of the urea dissociation transitions studied at pH 8.0, 1 x 10(-2) M Mg2+, 1 x 10(-2) M Ca2+ and pH 8.0, 3 x 10(-3) M Ca2+ suggest few hydrophobic amino acid groups, of the order of 10 to 15 at the contact areas of each half-molecule or decamer. 4. The further dissociation of the decamers to dimers and the dimers to monomers indicates the presence of a larger number of amino acid groups of ca 35-40/dimer and 100-120/monomer. 5. This suggests hydrophobic stabilization of the dimer to dimer and monomer to monomer contacts within the decamers, as observed with other molluscan hemocyanins.  相似文献   

5.
1. The hemocyanin of the chiton, Stenoplax conspicua, has a molecular weight determined by light-scattering of 4.2 X 10(6) daltons, (dt) and a sedimentation coefficient of 60 S. 2. The fully dissociated subunits in 6.0 and 8.0 M urea, and at pH 8.9-10 in the absence of divalent ions, have molecular weights of 4.15-4.30 x 10(5) and 4.17-4.75 x 10(5) dt, which is close to one-tenth of the molecular weight of the parent hemocyanin assembly. 3. The pH dependence of the molecular weights from pH 4.5 to 11 exhibit bell-shaped transition profiles, best accounted for by a three-species, decamer to dimer to monomer scheme of subunit dissociation, with one acidic and one basic ionizing group per dimer and 5-8 acidic and basic groups per monomer. 4. In the absence of stabilizing divalent ions S. conspicua hemocyanin is relatively unstable. At pH 7.4 in the presence of 0.01 M EDTA, it is predominantly in the dimeric state, characterized by a sedimentation constant of 18 S. It is also more readily dissociated to monomers at high pHs (8-9 and above) than are the C. stelleri and A. granulata hemocyanins. 5. Urea and GdmCl are effective dissociating agents of S. conspicua hemocyanin. The urea dissociation profile obtained at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+, and analyzed by means of the decamer-dimer-monomer scheme of subunit dissociation gave estimates of about 30 amino acid groups (Napp) at the dimer contacts within the hemocyanin decamers and about 120 groups per monomer within each dimer, suggesting hydrophobic stabilization of hemocyanin assembly.  相似文献   

6.
The subunit structure, dissociation, and unfolding of the hemoglobin of the earthworm, Lumbricus terrestris, were investigated by light scattering molecular weight methods and changes in optical rotatory dispersion (at 233 nm) and absorption in the Soret region. Urea and the alkylureas, methyl-, ethyl-, propyl-, and butylurea, were employed as the reagents to cause both dissociation and unfolding of the protein. Analysis of the light scattering data suggests that the dissociation patterns as a function of hemoglobin concentration in the various dissociating solvents can be described in quantitative terms, either as an equilibrium mixture consisting of parent duodecamers and hexamers of 3 x 10(6) and 1.5 x 10(6) molecular weight (in 1-3 M urea, 1-2 M methyl- and ethylurea, and 1 M propylurea), as a mixture of hexamers and monomers, the latter with a molecular weight of 250000 (i.e., in 4 M urea), or as a mixture of all three species of duodecamers, hexamers, and monomers, seen in 2 M propylurea. Parallel studies by optical rotation and absorption measurements indicate that there is little or no unfolding of the subunits at urea and alkylurea concentrations where complete dissociation to hexamers and extensive dissociation to monomers can be achieved. Further splitting of the monomers (A subunits) to smaller fragments of one-third to one-quarter of the molecular weight of the monomers (B subunits) is seen in the presence of 7 and 8 M urea (pH 7) and in alkaline urea to propylurea solutions. Analysis of the dissociation data of duodecamers to monomers, based on equations used in studies of the urea and amide dissociation of human hemoglobin A from our laboratory, suggests few urea and alkylurea binding sites at the areas of hexamer contacts in the associated duodecameric form of L. terrestris hemoglobin. This suggests that hydrophobic interactions are not the dominant forces that govern the state of association of L. terrestris hemoglobin relative to polar and ionic interactions. The unfolding effects of the ureas, at concentrations above the dissociation transitions, are closely similar to their effects on other globular proteins, suggesting that hydrophobic interactions play an important role in the maintenance of the folded conformation of the subunits. Use of the Peller-Flory equation, with binding constants based on free energy transfer data of hydrophobic amino acid side chains and denaturation data used in previous denaturation studies, gave a relatively good acount of the observed denaturation midpoints obtained with the various ureas supporting these conclusions.  相似文献   

7.
The molecular dimensions of the extracellular hemoglobin of the leech Macrobdella decora, determined by scanning transmission electron microscopy were 29.8 nm x 19.5 nm (diameter x height) for negatively stained specimens. Measurements of molecular mass (Mm) of unstained specimens with the microscope gave Mm = 3560 +/- 160 kDa. Small-angle X-ray scattering measurements gave a diameter of 28.0(+/- 0.5) nm, radius of gyration 10.5(+/- 0.2) nm and volume 7500(+/- 300) nm3. The hemoglobin had no carbohydrate and its iron content was found to be 0.23(+/- 0.02)% (w/w), corresponding to a minimum Mm of 24,000(+/- 1300) kDa. SDS/polyacrylamide gel electrophoresis of the unreduced hemoglobin showed that it consisted of three subunits, which have apparent Mm values of 12 (1), 25 (2) and 29 kDa (3). The reduced hemoglobin consisted of four subunits, I (12 kDa), II (14 kDa), III (26 kDa) and IV (30 kDa). Subunit 1 corresponded to subunit I, subunit 2 to subunits III and IV and subunit 3 to subunit II. Partial N-terminal sequences were obtained for subunit 1, the two chains of subunit 2 and one of the two chains of subunit 3, suggesting that the hemoglobin consists of at least five different polypeptide chains. The percentage fraction of the three unreduced subunits was determined by densitometry of SDS/polyacrylamide gel patterns and quantitative determination of Coomassie R-250 dye bound to the individual bands in reduced and unreduced patterns to be, monomer (subunit I) : non-reducible subunit (subunit 2) : reducible dimer (subunit 3) = 0.35 : 0.29 : 0.35 (S.D. = +/- 0.05). This corresponded to a stoichiometry of 74 +/- 11 : 37 +/- 5 : 38 +/- 6, assuming the molecular masses to be 17 kDa, 30 kDa and 34 kDa, taking into account the anomalously high mobility of annelid globins in SDS-containing gels. The stoichiometry calculated from the amino acid compositions of the hemoglobin and the three subunits was 82 +/- 12 : 29 +/- 4 : 40 +/- 8. Gel filtration of the hemoglobin at pH 9.8, at neutral pH subsequent to dissociation at pH 4 and at neutral pH in the presence of urea and Gu.HCl provided no evidence for the existence of a putative 1/12 of the whole molecule (Mm approx. 300 kDa). Furthermore, the largest subunits obtained had Mm of 60 to 100 kDa and had a much decreased content of subunit 2, suggesting that the hemoglobin was not a simple multimeric protein. Three-dimensional reconstruction from microscope images provided a model of Macrobdella hemoglobin that is very similar to the reconstruction of Lumbricus hemoglobin: the radial mass distribution curves are virtually superimposable.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The effects of the neutral salts of the Hofmeister series, NaCl, NaClO4, MgCl2, NaI, and also guanidine hydrochloride (Gdn-HCl)on the subunit organization and the state of association of Lumbricus terrestris hemoglobin were examined by light scattering molecular weight measurements. The subunit dissociation of the parent duodecameric structure of 3 x 10(6) molecular weight by various salts is similar in pattern to the sequential splitting of the associated protein to half-molecules of hexamers of 1.5 x 10(6) molecular weight, followed by further dissociation at higher reagent concentration to monomers of 250000 molecular weight. Duodecamer to hexamer dissociation is observed in 0.4 M MgCl2, 1-2 M NaCl, and 1 M Gdn-HCl, while hexamer to monomer dissociation is seen in the presence of 1 M MgCl2. All three species of duodecamers, hexamers, and monomers seem to be present in 1 M NaClO4. Further splitting of the monomers of A subunits to smaller B fragments of one-third to one-quarter molecular weight is observed in 1 M NaI solutions. Optical rotation in the peptide region and absorption measurements in the Soret region indicate the salt dissociation of Lumbricus terrestris hemoglobin is not accompanied by major changes in the folding of the subunits, except in the case of the strong protein denaturant, Gdn-HCl. Relative to the dissociation effects of the urea series of compounds reported in the preceding paper (Herskovits and Harrington, 1975), the neutral salts appear to be much more effective dissociating agents for L. terrestris hemoglobin. This suggests that polar and ionic interactions are relatively more important for the maintenance of the protein than hydrophobic interactions. This conclusion is also supported by calculations of the possible effects of binding of NaClO4, based on the Setschenow constants of the literature describing the interaction of salts with the peptide and hydrophobic alkyl group of the average amino acid found in proteins, on the standard free energy of dissociation of the duodecamer to hexamer.  相似文献   

9.
1. The hemocyanin of the freshwater snail, Marisa cornuarietis exists predominantly as a di-decamer with the approximate mol. wt of 8.5 x 10(6) and a sedimentation coefficient of 100 S. Sedimentation and scanning transmission electron microscopy experiments indicate that about 15-20% of the hemocyanin forms tri-decameric and possibly higher aggregates with mol. wts of 12.5 x 10(6) and 130 S. 2. The fully dissociated subunits in 8.0 M urea and 6.0 M GdmCl have mol. wts of 4.1 to 4.7 x 10(5) which is close to one-twentieth of the major di-decameric component of the native hemocyanin. 3. Subunit dissociation by the urea series and the Hofmeister salt series of reagents suggests hydrophobic stabilization of the decamers or half-molecules of the parent hemocyanin. As with the other molluscan hemocyanins the order of effectiveness of the ureas as dissociating agents shows increased efficacy with increasing hydrophobicity or chain-length of the urea substituents. 4. Denaturation of the hemocyanin subunits by the ureas and Hofmeister salt series, investigated by circular dichroism measurements, essentially follow the same trend in effectiveness as observed by changes in subunit dissociation followed by light-scattering mol. wt measurements. 5. The observed denaturation transitions are shifted to much higher ranges of reagent concentration than the concentrations required for the dissociation of the hemocyanin subunits.  相似文献   

10.
Helix pomatia beta-haemocyanin was split into dissociation products by varying the pH and the ionic strength. The purity of the solution was checked in an ultracentrifuge. Two defined dissociation products were studied in solution by small-angle X-ray scattering. In Tris-HC1 buffer, pH 8.0 and ionic strength 1 M, the following parameters of the dissociation product (tenths) could be determined: molecular weight = 7 x 10(5), volume = 1350 nm3, radius of gyration = 9.0 nm, maximal distance = 28.3 nm, radius of the spherical subunits about 2.6 nm, number of the subunits approximately 19. Tris-HC1 buffer, pH 8.7 and ionic strength 0.01 M, yielded dissociation products (twentieths) with the following parameters: molecular weight = 3.5 x 10(5), volume = 635 nm3, radius of gyration = 7.5 nm, maximal distance = 21.9 nm, radius of the spherical subunits about 2.5 nm. With this information, the assumption that the larger fragment was double the smaller one and the latest biochemical and morphological results, theoretical scattering curves of models were calculated and compared with the experimental curves. Two models are suggested which argee well with the dissociation products in radius of gyration and scattering.  相似文献   

11.
The foldon domain constitutes the C-terminal 30 amino acid residues of the trimeric protein fibritin from bacteriophage T4. Its function is to promote folding and trimerization of fibritin. We investigated structure, stability and folding mechanism of the isolated foldon domain. The domain folds into the same trimeric beta-propeller structure as in fibritin and undergoes a two-state unfolding transition from folded trimer to unfolded monomers. The folding kinetics involve several consecutive reactions. Structure formation in the region of the single beta-hairpin of each monomer occurs on the submillisecond timescale. This reaction is followed by two consecutive association steps with rate constants of 1.9(+/-0.5)x10(6)M(-1)s(-1) and 5.4(+/-0.3)x10(6)M(-1)s(-1) at 0.58 M GdmCl, respectively. This is similar to the fastest reported bimolecular association reactions for folding of dimeric proteins. At low concentrations of protein, folding shows apparent third-order kinetics. At high concentrations of protein, the reaction becomes almost independent of protein concentrations with a half-time of about 3 ms, indicating that a first-order folding step from a partially folded trimer to the native protein (k=210 +/- 20 s(-1)) becomes rate-limiting. Our results suggest that all steps on the folding/trimerization pathway of the foldon domain are evolutionarily optimized for rapid and specific initiation of trimer formation during fibritin assembly. The results further show that beta-hairpins allow efficient and rapid protein-protein interactions during folding.  相似文献   

12.
Unfolding and refolding of heterooctameric phosphofructokinase-1 from Saccharomyces cerevisiae were investigated by application of kinetic, hydrodynamic, and spectroscopic methods and by use of guanidinium chloride (GdmCl) as denaturant. Inactivation of the enzyme starts at about 0.3 M GdmCl and undergoes a sharp unfolding transition in a narrow range of the denaturant concentration. The inactivation is accompanied by a dissociation of the enzyme into dimers (at 0.6 M GdmCl), which could be detected by changes of the circular dichroism and intrinsic fluorescence. Protein aggregates were observed from 0.7 to 1.5 M GdmCl that unfold at higher denaturant concentrations. Refolding of chemically denatured phosphofructokinase proceeds as a stepwise process via the generation of elements of secondary structure, the formation of assembly-competent monomers that associate to heterodimers and the assembly of dimers to heterotetramers and heterooctamers. The assembly reactions seem to be rate-limiting. Recovery of the enzyme activity (maximum 65%) competes with an nonproductive aggregation of the subunits. alpha-Cyclodextrin functions as an artificial chaperone by preventing aggregation of the subunits, whereas ATP is suggested to support the generation of heterodimers that are competent to a further assembly.  相似文献   

13.
Repeated dissociation of the approximately 3600-kDa hexagonal bilayer extracellular hemoglobin of Lumbricus terrestris in 4 M urea followed by gel filtration at neutral pH produces a subunit that retains the oxygen affinity of the native molecule (approximately 12 torr), but only two-thirds of the cooperativity (nmax = 2.1 +/- 0.2 versus 3.3 +/- 0.3). The mass of this subunit was estimated to be 202 +/- 15 kDa by gel filtration and 202 +/- 26 kDa from mass measurements of unstained freeze-dried specimens by scanning transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this subunit showed that it consists predominantly of the heme-containing subunits M (chain I, 17 kDa) and T (disulfide-bonded chains II-IV, 50 kDa). Mixing of subunits M and T isolated concurrently with the 200-kDa subunit resulted in partial association into particles that had a mass of 191 +/- 13 kDa determined by gel filtration and 200 +/- 38 kDa determined by scanning transmission electron microscopy and whose oxygen affinity and cooperativity were the same as those of the 200-kDa subunit. The results imply that the 200-kDa subunit is a dodecamer of globin chains, consisting of three copies each of subunits M and T (3 x chains (I + II + III + IV], in good agreement with the mass of 209 kDa calculated from the amino acid sequences of the four chains, and represents the largest functional subunit of Lumbricus hemoglobin. Twelve copies of this subunit would account for two-thirds of the total mass of the molecule, as suggested earlier (Vinogradov, S. N., Lugo, S. L., Mainwaring, M. G., Kapp, O. H., and Crewe, A. V. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8034-8038). The retention of only partial cooperativity by the 200-kDa subunit implies that full cooperativity is dependent on the presence of a complete hexagonal bilayer structure, wherein 12 200-kDa subunits are linked together by approximately 30-kDa heme-deficient chains.  相似文献   

14.
The hemocyanin of the giant Pacific chiton, Cryptochiton stelleri has a molecular weight of 4.2 +/- 0.3 X 10(6), determined by light-scattering, and a sedimentation coefficient of 60S. The fully dissociated subunits in nondenaturing solvents, at pH 10.6, 1 X 10(-2)M EDTA and in 8.0 M urea, pH 7.4 have molecular weights of 4.10 X 10(5) and 4.35 X 10(5), close to one-tenth of the molecular mass of the parent hemocyanin decamers. In the pH region from about 3.5 to 11 the molecular weight (Mw), determined at constant protein concentration of 0.10 g1(-1) exhibits a bell-shaped molecular weight profile centering about the physiological pH of the hemolymph of 7.2. The pH-Mw profile is best accounted for in terms of a three state, decamer-dimer-monomer dissociation scheme. Analysis of the Mg2+ and Ca2+ effects on the molecular weight transitions suggest stabilization of the hemocyanin decamers through one bound divalent ion per hemocyanin monomer or dimer. Urea, GdmCl, and the higher members of the chaotropic salt series are effective dissociating agents for Cryptochiton stelleri hemocyanin. The dissociation profile obtained with urea at pH 8.5, 0.01 M Mg2+, 0.01 M Ca2+ has been analyzed in terms of both the two- and three-species schemes of subunit-dissociation. Hydrophobic stabilization of the subunit contacts is suggested by the large number of apparent amino acid groups (Napp), of the order of 30 between dimers stabilizing the decamers, and 120 apparent amino acid groups between each monomer forming the constituent dimers.  相似文献   

15.
The molecular weight of the extracellular hemoglobin of Tubifex tubifex determined by equilibrium sedimentation is 3.0 +/- 0.2 . 10(6). Polyacrylamide gel electrophoresis in sodium dodecyl sulfate showed that the hemoglobin dissociated into four subunits: 13 000 (subunit 1), 21 000 (subunit 2), 23 000 (subunit 3) and 47 000 (subunit 4); in the presence of mercaptoethanol two subunits were observed, 13 000 +/- 1000 (subunit I) accounting for 70--80% of the whole molecule, and 26 000 (subunit II). Electrophoresis of the subunits obtained in the absence of mercaptoethanol showed that subunit I originated from subunits 1 and 4, while subunit II originated from subunits 2 and 3. These relationships were supported by N-terminal group determinations. Gel filtration in 6 M guanidine hydrochloride showed that the molecular weight of subunit I is 17 500 and that of subunit II, 36 000. Tubifex hemoglobin appears to consist of at least seven polypeptide chains.  相似文献   

16.
1. The hemocyanin of the Californian whelk, Kelletia kelleti, investigated at pH and ionic conditions close to physiological, has a molecular weight close to 9.0 x 10(6) and a sedimentation constant of 114S, characteristic of the di-decameric structure of molluscan hemocyanins. Light-scattering measurements at pH 8.0, 0.05 M Mg2+, 0.01 M Ca2+ gave a molecular weight of 9.0 +/- 0.6 x 10(6), and scanning transmission electron microscopy produced nearly the same particle mass of 9.22 +/- 0.50 x 10(6) daltons (Da). 2. Light-scattering measurements on the fully dissociated monomers in the presence of 8.0 M urea and at pHs 10.6 and 11.0 gave molecular weights of 4.50 x 10(5)-4.91 x 10(5), that are close to one-twentieth of the mass of the parent di-decameric hemocyanin assembly. 3. Changes in pH produced a bell-shaped molecular weight profile, with molecular weights close to 9.0 x 10(6) in the pH region of about 5.5-8.0, and progressive dissociation to 4.5 x 10(5) Da monomers in the region below pH 4.0 and above pH 9.0 or 10, depending on the absence or presence of stabilizing Mg2+ ions (0.01 M). 4. In the absence of divalent ions some aggregation of hemocyanin was found at pHs close to 5.0, with observed molecular weights above 10 x 10(6) (investigated at a hemocyanin concentration of 0.10 g/l). The early studies of Condie and Langer (Science 144, 1138-1140, 1964) had shown that Kelletia kelleti hemocynanin aggregates at acidic pHs close to the isoelectric point, forming linear polymers of the hemocyanin di-decamers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Chemical denaturants are frequently used to unfold proteins and to characterize mechanisms and transition states of protein folding reactions. The molecular basis of the effect of urea and guanidinium chloride (GdmCl) on polypeptide chains is still not well understood. Models for denaturant--protein interaction include both direct binding and indirect changes in solvent properties. Here we report studies on the effect of urea and GdmCl on the rate constants (k(c)) of end-to-end diffusion in unstructured poly(glycine-serine) chains of different length. Urea and GdmCl both lead to a linear decrease of lnk(c) with denaturant concentration, as observed for the rate constants for protein folding. This suggests that the effect of denaturants on chain dynamics significantly contributes to the denaturant-dependence of folding rate constants for small proteins. We show that this linear dependency is the result of two additive non-linear effects, namely increased solvent viscosity and denaturant binding. The contribution from denaturant binding can be quantitatively described by Schellman's weak binding model with binding constants (K) of 0.62(+/-0.01)M(-1) for GdmCl and 0.26(+/-0.01)M(-1) for urea. In our model peptides the number of binding sites and the effect of a bound denaturant molecule on chain dynamics is identical for urea and GdmCl. The results further identify the polypeptide backbone as the major denaturant binding site and give an upper limit of a few nanoseconds for residence times of denaturant molecules on the polypeptide chain.  相似文献   

18.
Protein-RNA interactions in the RNase P holoenzyme from Escherichia coli   总被引:27,自引:0,他引:27  
The genes for the protein (C5 protein) and RNA (M1 RNA) subunits of Escherichia coli RNase P have been subcloned and their products prepared in milligram quantities by rapid procedures. The interactions between the two subunits of the enzyme have been studied in vitro by a filter-binding technique. The stoichiometry of the subunits in the holoenzyme is 1:1. The dissociation constant for the specific interactions of the subunits in the holoenzyme complex is approximately 4 x 10(-10) M. C5 protein also interacts with various RNA molecules in a non-specific manner with a dissociation constant of 2 x 10(-8) to 6 x 10(-8) M. Regions of M1 RNA required for interaction with C5 protein have been defined by deletion analysis and footprinting techniques. These interactions are localized primarily between nucleotides 82 to 96 and 170 to 270 of M1 RNA.  相似文献   

19.
The dissociation of nitric oxide from hemoglobin, from isolated subunits of hemoglobin, and from myoglobin has been studied using dithionite to remove free nitric oxide. The reduction of nitric oxide by dithionite has a rate of 1.4 X 10(3) M-1 S-1 at 20 degrees in 0.05 M phosphate, pH 7.0, which is small compared with the rate of recombination of hemoglobin with nitric oxide (25 X 10(6) M-1 S-1 (Cassoly, R., and Gibson, Q. H. (1975) J. Mol. Biol. 91, 301-313). The rate of NO combination with chains and myoglobin was found to be 24 X 10(6) M-1 S-1 and 17 X 10(6) M-1 S-1, respectively. Hence, the observed progress curve of the dissociation of nitric oxide is dependent upon the dithionite concentration and the total heme concentration. Addition of excess carbon monoxide to the dissociation mixture reduces the free heme yielding a single exponential process for chains and for myoglobin which is dithionite and heme concentration independent over a wide range of concentrations. The rates of dissociation of nitric oxide from alpha chains, from beta chains, and from myoglobin are 4.6 X 10(-5) S-1, 2.2 X 10(-5) S-1, and 1.2 X 10(4) S-1, respectively, both in the presence and in the absence of carbon monoxide at 20 degrees in 0.05 M phosphate, pH 7.0. Analogous heme and dithionite concentration dependence is found for the dissociation of nitric oxide from tetrameric hemoglobin. The reaction is cooperative, the intrinsic rate constants for the dissociation of the 1st and 4th molecules of NO differing about 100-fold. With hemoglobin, replacement of NO by CO at neutral pH is biphasic in phosphate buffers. The rate of the slow phase is 1 X 10(-5) S-1 and is independent of pH. The amplitude of the fast phase increases with lowering of pH. By analogy with the treatment of the HbCO + NO reaction given by Salhany et al. (Salhany, J.M., Ogawa, S., and Shulman, R.G. (1975) Biochemistry 14, 2180-2190), the fast phase is attributed to the dissociation of NO from T state molecules and the slow phase to dissociation from R state molecules. Analysis of the data gives a pH-independent value of 0.01 for the allosteric constant c (c = Kr/Kt where Kr and Kt are the dissociation constants for NO from the R and T states, respectively) and pH-dependent values of L (2.5 X 10(7) at pH 7 in 0.05 M phosphate buffer). The value of c is considerably greater than that for O2 and CO. Studies of the difference spectrum induced in the Soret region by inositol hexaphosphate are also reported. This spectrum does not arise directly from the change of conformation between R and T states. The results show that if the equilibrium binding curve for NO could be determined experimentally, it would show cooperativity with Hill's n at 50% saturation of about 1.6.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号