首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lowered pulmonary arterial pressure prevents edema after endotoxin in sheep   总被引:3,自引:0,他引:3  
Escherichia coli endotoxin causes increased capillary membrane permeability and increased pulmonary arterial pressure (PAP) in sheep. If the pulmonary hypertension extends to the level of the microvasculature, then the increased microvascular pressure may contribute to the pulmonary edema caused by endotoxin. We tested the hypothesis that reducing the pulmonary hypertension would reduce the amount of edema caused by endotoxin. Twelve sheep were chronically instrumented with catheters to measure PAP, left atrial pressure, and central venous pressure. The sheep were divided into two groups. One group (E) of six sheep received an intravenous infusion of 4 micrograms/kg of E. coli endotoxin. The second group (E + SNP) received the same dose of endotoxin as well as a continuous infusion of sodium nitroprusside (SNP) to reduce PAP. Three hours after the endotoxin infusions, the sheep were terminated and the extravascular fluid-to-blood-free dry weight ratios of the lungs were determined (EVF). The base-line PAP was 17.5 +/- 2.7 mmHg. A two-way analysis of variance demonstrated a significant difference (P less than 0.01) in PAP between the E and E + SNP groups. Although PAP in each group varied as a function of time, the difference between the two groups did not. The mean PAP for the E + SNP group (20.9 +/- 1.5 mmHg) was lower than the E group PAP of 27.3 +/- 2.1 mmHg after the endotoxin spike. Furthermore, the E + SNP group EVF (3.9 +/- 0.2) was significantly less than the EVF of the E group (4.7 +/- 0.5).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Pulmonary lymph drains into the thoracic duct and then into the systemic venous circulation. Since systemic venous pressure (SVP) must be overcome before pulmonary lymph can flow, variations in SVP may affect lymph flow rate and therefore the rate of fluid accumulation within the lung. The importance of this issue is evident when one considers the variety of clinical interventions that increase SVP and promote pulmonary edema formation, such as volume infusion, positive-pressure ventilation, and various vasoactive drug therapies. We recorded pulmonary arterial pressure (PAP), left atrial pressure (LAP), and SVP in chronic unanesthetized sheep. Occlusion balloons were placed in the left atrium and superior vena cava to control their respective pressures. The superior vena caval occluder was placed above the azygos vein so that bronchial venous pressure would not be elevated when the balloon was inflated. Three-hour experiments were carried out at various LAP levels with and without SVP being elevated to 20 mmHg. The amount of fluid present in the lung was determined by the wet-to-dry weight ratio method. At control LAP levels, no significant difference in lung fluid accumulation could be shown between animals with control and elevated SVP levels. When LAP was elevated above control a significantly greater amount of pulmonary fluid accumulated in animals with elevated SVP levels compared with those with control SVP levels. We conclude that significant excess pulmonary edema formation will occur when SVP is elevated at pulmonary microvascular pressures not normally associated with rapid fluid accumulation.  相似文献   

3.
In the present study our aim was to determine whether or not neurogenic pulmonary edema would develop from a brief pulse of intracranial pressure (ICP) in the absence of any obvious pulmonary hypertension. There were three groups of cats: sham-operated controls, ICP only, and ICP plus variable occlusion of the pulmonary artery. Partial occlusion of the pulmonary artery was carried out by placing a ligature around the pulmonary trunk and mechanically constricting the artery to maintain pulmonary arterial pressure (PAP) and left atrial pressure (LAP) at pre-ICP levels. In sham-operated animals the extravascular lung water/blood free dry weight ratio (EVLW/BFDW) was 3.26 +/- 0.07 and broncho-alveolar lavage (BAL) protein, 6.49 +/- 0.62 mg/g lung. ICP-only caused a rise in PAP, left atrial pressure, and EVLW/BFDW to 3.67 +/- 0.08 (P less than 0.05). ICP with partial occlusion of the pulmonary artery prevented any rise in PAP or LAP while EVLW/BFDW rose to 3.67 +/- 0.10 (P less than 0.05) and BAL protein was 8.37 +/- 1.27 mg/g lung. Our results show that EVLW/BFDW can increase with neurogenic pulmonary edema in cats in the absence of an obvious increase in pulmonary arterial or left atrial pressure.  相似文献   

4.
Infusion of Escherichia coli endotoxin (0.12-1.5 micrograms/kg) into unanesthetized sheep causes transient pulmonary hypertension and several hours of increased lung vascular permeability, after which sheep recover. To produce enough lung injury to result in pulmonary edema with respiratory failure, we infused larger doses of E. coli endotoxin (2.0-5.0 micrograms/kg) into 11 chronically instrumented unanesthetized sheep and continuously measured pulmonary arterial, left atrial and aortic pressures, dynamic lung compliance, lung resistance, and lung lymph flow. We intermittently measured arterial blood gas tensions and pH, made interval chest radiographs, and calculated postmortem extravascular bloodless lung water-to-dry lung weight ratio (EVLW/DLW). Of 11 sheep 8 developed respiratory failure; 7 died spontaneously 6.3 +/- 1.1 h, and one was killed 10 h after endotoxin infusion. All sheep that had a premortem room air alveolar-arterial gradient in partial pressure of O2 (PAo2-Pao2) greater than 42 Torr (58 +/- 5 (SE) Torr) died. Of eight sheep that had radiographs made, six developed radiographically evident interstitial or interstitial and alveolar edema. Pulmonary artery pressure rose from base line 22 +/- 2 to 73 +/- 3 cmH2O and remained elevated above baseline levels until death. There was an initial fourfold decrease in dynamic compliance and sixfold increase in pulmonary resistance; both variables remained abnormal until death. EVLW/DLW increased with increasing survival time after endotoxin infusion, suggesting that pulmonary edema accumulated at the same rate in all fatally injured sheep, regardless of other variables. The best predictor of death was a high PAo2-Pao2. The marked increase in pulmonary resistance and decrease in dynamic compliance occurred too early after endotoxin infusion (15-30 min) to be due to pulmonary edema. The response to high-dose endotoxin in sheep closely resembles acute respiratory failure in humans following gram-negative septicemia. Respiratory failure and death in this model were not due to pulmonary edema alone.  相似文献   

5.
Positive end-expiratory pressure (PEEP) increases central venous pressure, which in turn impedes return of systemic and pulmonary lymph, thereby favoring formation of pulmonary edema with increased microvascular pressure. In these experiments we examined the effect of thoracic duct drainage on pulmonary edema and hydrothorax associated with PEEP and increased left atrial pressure in unanesthetized sheep. The sheep were connected via a tracheostomy to a ventilator that supplied 20 Torr PEEP. By inflation of a previously inserted intracardiac balloon, left atrial pressure was increased to 35 mmHg for 3 h. Pulmonary arterial, systemic arterial, and central venous pressure as well as thoracic duct lymph flow rate were continuously monitored, and the findings were compared with those in sheep without thoracic duct cannulation (controls). At the end of the experiment we determined the severity of pulmonary edema and the volume of pleural effusion. With PEEP and left atrial balloon insufflation, central venous and pulmonary arterial pressure were increased approximately threefold (P less than 0.05). In sheep with a thoracic duct fistula, pulmonary edema was less (extra-vascular fluid-to-blood-free dry weight ratio 4.8 +/- 1.0 vs. 6.1 +/- 1.0; P less than 0.05), and the volume of pleural effusion was reduced (2.0 +/- 2.9 vs. 11.3 +/- 9.6 ml; P less than 0.05). Our data signify that, in the presence of increased pulmonary microvascular pressure and PEEP, thoracic duct drainage reduces pulmonary edema and hydrothorax.  相似文献   

6.
We tested the hypothesis that, in canine embolic pulmonary hypertension, upstream transmission of increased left atrial pressure (LAP) is inversely related to the level of the pressure intercept (PI) obtained by extrapolation from the linear pulmonary vascular pressure-flow (P-Q) plot. P-Q coordinates were obtained by varying Q through systemic fistulas. Seven group 1 dogs were embolized with autologous blood clot to produce marked pulmonary hypertension and mean pulmonary arterial pressure (PAP), and PI increased from 15 to 41 mmHg (P less than 0.001) and from 8.8 to 31 mmHg (P less than 0.001), respectively. Before and after embolization we assessed effects of increased LAP, produced by inflation of a left atrial balloon, on PAP at constant Q. Embolization depressed the mean slope of this relationship from 0.78 to 0.16 (P less than 0.001). Subsequently, six group 2 dogs were embolized to produce moderate pulmonary hypertension with a mean PI of 22 mmHg. This value was significantly less than PI in group 1 (P less than 0.01). After embolization, the slope of the PAP-LAP relationship was greater in group 2 than group 1: 0.47 vs. 0.16 (P less than 0.01). We conclude that the upstream transmission of left atrial pressure is inversely related to PI and that marked embolic pulmonary hypertension produces an effective vascular waterfall.  相似文献   

7.
Oleic acid lung injury in sheep   总被引:3,自引:0,他引:3  
Intravenous infusion of oleic acid into experimental animals causes acute lung injury resulting in pulmonary edema. We investigated the mechanism of oleic acid lung injury in sheep. In experiments with anesthetized and unanesthetized sheep with lung lymph fistulas, we measured pulmonary arterial and left atrial pressures, cardiac output, lung lymph flow, and lymph and plasma protein concentrations. We injured the lungs with intravenous infusions of oleic acid at doses ranging from 0.015 to 0.120 ml/kg. We found that oleic acid caused reproducible dose-related increases in pulmonary arterial pressure and pulmonary vascular resistance, arterial hypoxemia, and increased protein-rich lung lymph flow and extravascular lung water. The lung fluid balance changes were characteristic of increased permeability pulmonary edema. Infusion of the esterified fat triolein had no hemodynamic or lung fluid balance effects. Depletion of leukocytes with a nitrogen mustard or platelets with an antiplatelet serum had no effect on oleic acid lung injury. Treatment of sheep before injury with methylprednisolone 30 mg/kg or ibuprofen 12.5-15.0 mg/kg also had no effects. Unlike other well-characterized sheep lung injuries, injury caused by oleic acid does not require participation of leukocytes.  相似文献   

8.
The effects of increased hydrostatic pressure on the concentrations of hyaluronan (hyaluronic acid) in lung lymph and serum were investigated in awake sheep with a cannula in the efferent vessel from the caudal mediastinal lymph node. Lung lymph was sampled at base line [left atrial pressure (LAP) 6.5 +/- 1.7 mmHg] and after two increases of LAP to 25.7 +/- 2.2 mmHg (level 1) and 37.0 +/- 5.1 mmHg (level 2). The lung lymph flow increased from 1.9 +/- 0.5 at base line to 9.3 +/- 2.2 and 15.9 +/- 0.7 ml/30 min, and the lymph-to-plasma concentration ratio of total protein decreased from 0.63 +/- 0.02 to 0.32 +/- 0.04 and 0.32 +/- 0.05 at the two elevated levels of LAP, respectively. The hyaluronan concentration in lung lymph was unchanged, and there was a flow-dependent elimination of hyaluronan from the lung that increased from 23 +/- 8 to 87 +/- 19 and 137 +/- 37 micrograms/30 min, respectively. The lung concentration of hyaluronan was 167 +/- 28 micrograms/g fresh lung, and at base line it was calculated that slightly less than 2% of the lung hyaluronan was eliminated by the lymphatic route in 24 h. If extrapolated to 24 h, the elimination rate of hyaluronan seen during elevated LAP would result in lymphatic elimination of 18% of the lung hyaluronan over this time period. Since hyaluronan is responsible for part of the protein exclusion in the extracellular matrix, it is plausible that washout of interstitial hyaluronan contributes to the decrease in albumin exclusion from the interstitium that occurs after an elevation of LAP.  相似文献   

9.
We tested the hypothesis that cocaine-induced impairment of left ventricular function results in cardiogenic pulmonary edema. Mongrel dogs, anesthetized with alpha-chloralose, were injected with two doses of cocaine (5 mg/kg iv) 27 min apart. Cocaine produced transient decreases in aortic and left ventricular systolic pressures that were followed by increases exceeding control. As aortic pressure recovered, left ventricular end-diastolic, left atrial (Pla), pulmonary arterial (Ppa), and central venous pressures rose. Cardiac output and stroke volume were reduced when measured 4-5 min after cocaine administration. Peak Ppa and Pla were 31 +/- 5 (SE) mmHg (range 17-51 mmHg) and 26 +/- 5 mmHg (range 12-47 mmHg), respectively. Increases in extravascular lung water content (4.10 to 6.24 g H2O/g dry lung wt) developed in four animals in which Pla exceeded 30 mmHg. Analysis of left ventricular function curves revealed that cocaine depressed the inotropic state of the left ventricle. Cocaine-induced changes in hemodynamics spontaneously recovered and could be elicited again by the second dose of the drug. Our results show that cocaine-induced pulmonary hypertension, associated with decreased left ventricular function, produces pulmonary edema if pulmonary vascular pressures rise sufficiently.  相似文献   

10.
The pulmonary edema of smoke inhalation is caused by the toxins of smoke and not the heat. We investigated the potential of smoke consisting of carbon in combination with either acrolein or formaldehyde (both common components of smoke) to cause pulmonary edema in anesthetized sheep. Seven animals received acrolein smoke, seven animals received a low-dose formaldehyde smoke, and five animals received a high-dose formaldehyde smoke. Pulmonary arterial pressure, pulmonary capillary wedge pressure, and cardiac output were not affected by smoke in any group. Peak airway pressure increased after acrolein (14 +/- 1 to 21 +/- 2 mmHg; P less than 0.05) and after low- and high-dose formaldehyde (14 +/- 1 to 21 +/- 1 and 20 +/- 1 mmHg, respectively; both P less than 0.05). The partial pressure of O2 in arterial blood fell sharply after acrolein [219 +/- 29 to 86 +/- 9 (SE) Torr; P less than 0.05] but not after formaldehyde. Only acrolein resulted in a rise in lung lymph flow (6.5 +/- 2.2 to 17.9 +/- 2.6 ml/h; P less than 0.05). Lung lymph-to-plasma protein ratio was unchanged for all three groups, but clearance of lymph protein was increased after acrolein. After acrolein, the blood-free extravascular lung water-to-lung dry weight ratio was elevated (P less than 0.05) compared with both low- and high-dose formaldehyde groups (4.8 +/- 0.4 to 3.3 +/- 0.2 and 3.6 +/- 0.2, respectively). Lymph clearance (ng/h) of thromboxane B2, leukotriene B4, and the sulfidopeptide leukotrienes was elevated after acrolein but not formaldehyde.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
It has been suggested that coronary ischemia increases extravascular lung water. To determine whether pulmonary microvascular permeability is increased by coronary ischemia, we measured pulmonary hemodynamics, lung lymph flow (QL), and lymph-to-plasma protein concentration ratio (L/P) in 12 sheep with chronic lung lymph fistulas. Studies were done in 3 groups: in group 1 (n = 7) a marginal branch of the left circumflex artery (Lcx) was occluded, in group 2 (n = 5) left atrial pressure (Pla) was mechanically raised by 10 mmHg, and in group 3 (n = 5) Lcx was occluded and Pla was raised by 10 mmHg. In group 1, coronary occlusion increased QL (4.6 +/- 0.4 to 8.3 +/- 2.6 ml/h) without changes in L/P. In group 2, elevated Pla increased QL (5.1 +/- 1.2 to 10.1 +/- 3.0 ml/h) with decreases in L/P (0.71 +/- 0.02 to 0.61 +/- 0.02). In group 3, coronary occlusion with elevated Pla caused a further increase in QL (5.0 +/- 1.5 to 16.9 +/- 4.6 ml/h) without significant decreases in L/P (0.71 +/- 0.01 to 0.65 +/- 0.06). Lung lymph concentrations of 6-keto-prostaglandin F1 alpha (a degradation product of prostacyclin) increased transiently after coronary occlusion. These results indicate that coronary occlusion can increase transcapillary protein transport in lungs of conscious sheep and simultaneously increase prostacyclin production in the lung.  相似文献   

12.
To determine the role of platelet-activating factor (PAF) in endotoxin shock, we studied the effects of ONO-6240, a PAF antagonist, on endotoxin shock in unanesthetized sheep. Changes in hemodynamics, lung lymph balance, leukocyte and platelet counts, and arterial blood gas tensions were measured in four groups; endotoxin alone; endotoxin plus ONO-6240; ONO-6240 alone; vehicle control. Pretreatment with ONO-6240 in sheep given endotoxin significantly prevented the decreases in systemic arterial pressure, left atrial pressure and cardiac output observed in sheep given endotoxin alone. A partial effect on diminishing the magnitude of peripheral leukopenia was also noted. However, pretreatment with ONO-6240 had little effect on pulmonary hypertension and lung lymph balance. We conclude that endotoxin causes two different effects: vascular collapse and direct lung injury; and that PAF is involved only in the circulatory manifestations.  相似文献   

13.
The effects of pulmonary lymphatic obstruction and pulmonary venous congestion on the activities of slowly adapting receptors (SAR) and rapidly adapting receptors (RAR) of the airways were examined in anaesthetized, artificially ventilated dogs. In 11 out of 12 RAR (12 dogs) examined, pulmonary lymphatic obstruction for a period of 20 min produced a sustained significant increase in activity without a significant change in peak airway pressure and dynamic compliance. The activity remained significantly elevated even after the pulmonary lymphatic obstruction was released. This stimulus was without effect on the SAR (n = 5 dogs). Pulmonary venous congestion alone increased the RAR activity (n = 7 dogs) significantly without producing significant changes in airway mechanics. Lymphatic obstruction, when superimposed upon congestion, did not produce a further significant increase in activity. In four dogs the effect of pulmonary venous congestion (left atrial pressure increased from 7.6 +/- 1.7 to 16.3 +/- 2.7 mmHg) (1 mmHg = 133.3 Pa) on pulmonary lymphatic flow was examined. The procedure caused a significant increase in lymph flow. These results suggest that in the dog, the RAR activity is influenced by changes in the pulmonary extravascular space.  相似文献   

14.
The purpose of this study was to determine whether an increase in pulmonary vascular filtration pressure affects net production of liquid within the lumen of the fetal lung. We studied 14 chronically catheterized fetal lambs [130 +/- 3 (SD) days gestation] before, during, and after a 4-h rapid (500 ml/h) intravenous infusion of isotonic saline. In seven fetuses we measured pulmonary arterial and left atrial pressures, lung lymph flow, and protein osmotic pressures in plasma and lymph. In eight lambs with a chronically implanted tracheal loop cannula, we measured the change in luminal lung liquid volume over time by progressive dilution of tracheally instilled 125I-albumin, which stays within the lung lumen. Saline infusion increased pulmonary vascular pressures by 2-3 mmHg and decreased the plasma-lymph difference in protein osmotic pressure by 1 mmHg. Lung lymph flow increased from 1.9 +/- 0.6 to 3.9 +/- 1.2 (SD) ml/h; net production of luminal lung liquid did not change (12 +/- 5 to 12 +/- 6 ml/h). Thus an increase in net fluid filtration pressure in the pulmonary circulation, which was sufficient to double lung lymph flow, had no significant effect on luminal lung liquid secretion in fetal sheep.  相似文献   

15.
We devised a technique that permitted elevation of pulmonary pressures in unanesthetized sheep by occluding their pulmonary veins. Using this technique, we raised pulmonary capillary pressure from a baseline of 13.2 +/- 2.2 to 35.3 +/- 5.1 mmHg. This increased lung lymph flow (from 8.8 +/- 2.7 to 53.1 +/- 13.9 ml/h). We estimated the pulmonary microvascular oncotic reflection coefficient and found it to be 0.82 +/- 0.05 (SD). The filtration coefficient was 0.019 +/- 0.005 ml.mmHg-1.min-1. During the period of increased pressure, the animals had stable arterial pressures and cardiac outputs. None of the animals developed blood coagulation problems. These data illustrate the usefulness of pulmonary venous occlusion to elevate pulmonary microvascular pressure to obtain plasma-to-lymph protein concentration ratios independent of flow, allowing for the calculation of the oncotic reflection coefficient.  相似文献   

16.
To determine whether uremia changes lung vascular permeability, we measured the flow of lymph and proteins from the lungs of acutely uremic sheep. Acute renal failure was induced by either bilateral nephrectomy or by reinfusing urine. Both models of renal failure increased the plasma creatinine from 0.8 +/- 0.3 to 11 +/- 1 mg/dl in 3 days but caused no significant change in the flow of lymph from the lungs. To determine whether uremia increased the protein clearance response to elevated pulmonary microvascular pressures, we inflated a balloon in the left atrium for 2 h before and 3 days after inducing acute renal failure. In seven sheep, before removing the kidneys, the 20 cmH2O elevation of left atrial pressure increased the protein clearance 3.9 +/- 3.0 ml/h (from 9.5 +/- 4.9 to 13.4 +/- 5.4 ml/h). Three days after the bilateral nephrectomy the same increase in left atrial pressure increased the protein clearance 6.4 +/- 3.6 ml/h (from 6.1 +/- 2.1 to 12.5 +/- 5.2 ml/h), which was a significantly larger increase than that measured before the nephrectomy (P less than 0.05). Sham nephrectomy in seven sheep caused the protein clearance response to the elevated left atrial pressure to fall from 4.7 +/- 1.9 ml/h before the sham nephrectomy to 2.6 +/- 1.4 ml/h 3 days later (P less than 0.05). Uremia due to reinfusion of urine in five sheep did not affect the protein clearance response to elevations in left atrial pressure. Neither model of acute uremia increased the postmortem extravascular lung water volume.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of cardiogenic and noncardiogenic pulmonary edema on the activities of rapidly adapting receptors (RARs) and pulmonary C-fibre receptors were investigated in dogs anaesthetized with chloralose. Cardiogenic pulmonary edema was produced by elevating the mean left atrial pressure by 25 mmHg (1 mmHg = 133.32 Pa) above the control value for a period of 45 min, by partial obstruction of the mitral valve. Noncardiogenic pulmonary edema was produced by injecting alloxan (100 mg/kg) intravenously. The effect of the latter was examined on RARs alone. Cardiogenic edema activated RARs (n = 8) and the activity was greatest during the first few minutes after elevation of mean left atrial pressure. The pulmonary C-fibre receptors (n = 6) were also activated by cardiogenic edema, but these responses were variable. Noncardiogenic pulmonary edema also activated RAR (n = 6), and this response was maintained during the entire recording period (20 min). The extravascular lung water (%), measured 15 min (n = 5) and 45 min (n = 5) after the elevation of the mean left atrial pressure, was significantly elevated above control values. However, these two values were not significantly different from each other. The extravascular lung water increased significantly after the injection of alloxan also (n = 5). These results show that during pulmonary edema, there is significant stimulation of the RARs and the pulmonary C-fibre receptors. It is suggested that the reflex respiratory responses observed in pulmonary edema may be due to the activation of both the RARs and the pulmonary C-fibre receptors.  相似文献   

18.
We compared the effects of continuous positive-pressure ventilation (CPPV), using 10 cmH2O positive end-expiratory pressure (PEEP), with intermittent positive-pressure ventilation (IPPV), on pulmonary extravascular water volume (PEWV) and lung function in dogs with pulmonary edema caused by elevated left atrial pressure and decreased colloid osmotic pressure. The PEWV was measured by gravimetric and double-isotope indicator dilution methods. Animals with high (22-33 mmHg), moderately elevated (12-20 mmHg), and normal (3-11 mmHg) left atrial pressures (Pla) were studied. The PEWV by both methods was significantly increased in the high and moderate Pla groups, the former greater than the latter (P less than 0.05). There was no difference in the PEWV between animals receiving CPPV and those receiving IPPV in both the high and moderately elevated Pla groups. However, in animals with high Pla, the Pao2 was significantly better maintained and the inflation pressure required to deliver a tidal volume of 12 ml/kg was significantly less with the use of CPPV than with IPPV. We conclude that in pulmonary edema associated with high Pla, PEEP does not reduce PEWV but does improve pulmonary function.  相似文献   

19.
To examine the development of pulmonary edema during experimental renal dysfunction, left atrial pressure was altered in 14 mongrel dogs divided into two groups. Group 1 was composed of seven control animals, and Group 2 was composed of seven animals with surgically induced renal failure (1 week of bilateral ureteral ligation). Data were obtained at two levels of matched transmural pulmonary vascular pressure (defined as mean left atrial pressure less serum protein osmotic pressure). In the animals with renal dysfunction, extravascular lung water (EVLW) (thermal-green dye technique) was higher at moderately (-1 to -2 mm Hg) and severely elevated (11 to 12 mm Hg) vascular driving pressures (11.5 +/- 1.2 cc/kg vs 10.6 +/- 0.8 cc/kg and 14.8 +/- 1.3 cc/kg vs 13.0 +/- 1.9 cc/kg, respectively, both P less than 0.05 vs control). Because protein osmotic pressure was lower in the renal failure group (15.0 +/- 1.8 mm Hg vs 18.4 +/- 1.4 mm Hg, P less than 0.05), greater accumulations of extravascular lung water occurred at lower levels of left atrial pressure (14.2 +/- 1.4 mm Hg vs 17.1 +/- 1.2 mm Hg, P less than 0.05; 26.8 +/- 2.6 mm Hg vs 29.5 +/- 2.3 mm Hg, P less than 0.01). In addition, when the ratio of EVLW/PBV (pulmonary blood volume) was examined in both groups at each stage of the experiment, the ratio was greater in the Group 2 animals at each elevated pressure, suggesting increased permeability with renal dysfunction. In conclusion, pulmonary edema formation occurs at lower left atrial pressures in the setting of sustained renal dysfunction, this phenomenon can be partially explained by lower protein osmotic pressure though altered pulmonary microvascular permeability may contribute to edema formation.  相似文献   

20.
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347 (6,100 m), and 282/240 Torr (7,620/8,840 m). Resting PAP and pulmonary vascular resistance (PVR) increased from sea level to maximal values at PB 282 Torr from 15 +/- 0.9 to 34 +/- 3.0 mmHg and from 1.2 +/- 0.1 to 4.3 +/- 0.3 mmHg.l-1 X min, respectively. During near maximal exercise PAP increased from 33 +/- 1 mmHg at sea level to 54 +/- 2 mmHg at PB 282 Torr. Right atrial and wedge pressures were not increased with altitude. Acute 100% O2 breathing lowered cardiac output and PAP but not PVR. Systemic arterial pressure and resistance did not rise with altitude but did increase with O2 breathing, indicating systemic control differed from the lung circulation. We concluded that severe chronic hypoxia caused elevated pulmonary resistance not accompanied by right heart failure nor immediately reversed by O2 breathing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号