首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
5-Aminoimidazole-4-carboxamide1--D-ribofuranoside(AICAR) is taken up by perfused skeletal muscle andphosphorylated to form5-aminoimidazole-4-carboxamide-1--D-ribofuraosyl-5'-monophosphate (analog of 5'-AMP) with consequent activation of AMP-activated protein kinase, phosphorylation of acetyl-CoA carboxylase, decrease inmalonyl-CoA, and increase in fatty acid oxidation. Thisstudy was designed to determine the effect of increasing levels ofpalmitate on the rate of fatty acid oxidation. Malonyl-CoAconcentration was manipulated with AICAR at different palmitateconcentrations. Rat hindlimbs were perfused with Krebs-Henseleitbicarbonate containing 4% bovine serum albumin, washed bovine redcells, 200 µU/ml insulin, 10 mM glucose, and different concentrationsof palmitate (0.1-1.0 mM) without or with AICAR (2.0 mM).Perfusion with medium containing AICAR was found to activateAMP-activated protein kinase in skeletal muscle, inactivate acetyl-CoAcarboxylase, and decrease malonyl-CoA at all concentrations ofpalmitate. The rate of palmitate oxidation increased as a function ofpalmitate concentration in both the presence and absence of AICAR butwas always higher in the presence of AICAR. These results provideadditional evidence that malonyl-CoA is an important regulator of therate of fatty acid oxidation at palmitate concentrations in thephysiological range.

  相似文献   

2.
We examined whether acute activation of 5'-AMP-activated protein kinase (AMPK) by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR) ameliorates insulin resistance in isolated rat skeletal muscle. Insulin resistance was induced in extensor digitorum longus (EDL) muscles by prolonged exposure to 1.6 mM palmitate, which inhibited insulin-stimulated glycogen synthesis to 51% of control after 5 h of incubation. Insulin-stimulated glucose transport was less affected (22% of control). The decrease in glycogen synthesis was accompanied by decreased glycogen synthase (GS) activity and increased GS phosphorylation. When including 2 mM AICAR in the last hour of the 5-h incubation with palmitate, the inhibitory effect of palmitate on insulin-stimulated glycogen synthesis and glucose transport was eliminated. This effect of AICAR was accompanied by activation of AMPK. Importantly, AMPK inhibition was able to prevent this effect. Neither treatment affected total glycogen content. However, glucose 6-phosphate was increased after inclusion of AICAR, indicating increased influx of glucose. No effect of AICAR on the inhibited insulin-stimulated GS activity or increased GS phosphorylation by palmitate could be detected. Thus the mechanism by which AMPK activation ameliorates the lipid-induced insulin resistance probably involves induction of compensatory mechanisms overriding the insulin resistance. Our results emphasize AMPK as a promising molecular target for treatment of insulin resistance.  相似文献   

3.
The objective of this study was to investigate the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR)-induced AMP-activated protein kinase (AMPK) activation on basal and insulin-stimulated glucose and fatty acid metabolism in isolated rat adipocytes. AICAR-induced AMPK activation profoundly inhibited basal and insulin-stimulated glucose uptake, lipogenesis, glucose oxidation, and lactate production in fat cells. We also describe the novel findings that AICAR-induced AMPK phosphorylation significantly reduced palmitate (32%) and oleate uptake (41%), which was followed by a 50% reduction in palmitate oxidation despite a marked increase in AMPK and acetyl-CoA carboxylase phosphorylation. Compound C, a selective inhibitor of AMPK, not only completely prevented the inhibitory effect of AICAR on palmitate oxidation but actually caused a 2.2-fold increase in this variable. Compound C also significantly increased palmitate oxidation in the presence of inhibitory concentrations of malonyl-CoA and etomoxir indicating an increase in CPT1 activity. In contrast to skeletal muscle in which AMPK stimulates fatty acid oxidation to provide ATP as a fuel, we propose that AMPK activation inhibits lipogenesis and fatty acid oxidation in adipocytes. Inhibition of lipogenesis would conserve ATP under conditions of cellular stress, although suppression of intra-adipocyte oxidation would spare fatty acids for exportation to other tissues where their utilization is crucial for energy production. Additionally, the stimulatory effect of compound C on long chain fatty acid oxidation provides a novel pharmacological approach to promote energy dissipation in adipocytes, which may be of therapeutic importance for obesity and type II diabetes.  相似文献   

4.
To determine the role of AMP-activated protein kinase (AMPK) activation on the regulation of fatty acid (FA) uptake and oxidation, we perfused rat hindquarters with 6 mM glucose, 10 microU/ml insulin, 550 microM palmitate, and [14C]palmitate during rest (R) or electrical stimulation (ES), inducing low-intensity (0.1 Hz) muscle contraction either with or without 2 mM 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). AICAR treatment significantly increased glucose and FA uptake during R (P < 0.05) but had no effect on either variable during ES (P > 0.05). AICAR treatment significantly increased total FA oxidation (P < 0.05) during both R (0.38 +/- 0.11 vs. 0.89 +/- 0.1 nmol x min(-1) x g(-1)) and ES (0.73 +/- 0.11 vs. 2.01 +/- 0.1 nmol x min(-1) x g(-1)), which was paralleled in both conditions by a significant increase and significant decrease in AMPK and acetyl-CoA carboxylase (ACC) activity, respectively (P < 0.05). Low-intensity muscle contraction increased glucose uptake, FA uptake, and total FA oxidation (P < 0.05) despite no change in AMPK (950.5 +/- 35.9 vs. 1,067.7 +/- 58.8 nmol x min(-1) x g(-1)) or ACC (51.2 +/- 6.7 vs. 55.7 +/- 2.0 nmol x min(-1) x g(-1)) activity from R to ES (P > 0.05). When contraction and AICAR treatment were combined, the AICAR-induced increase in AMPK activity (34%) did not account for the synergistic increase in FA oxidation (175%) observed under similar conditions. These results suggest that while AMPK-dependent mechanisms may regulate FA uptake and FA oxidation at rest, AMPK-independent mechanisms predominate during low-intensity muscle contraction.  相似文献   

5.
Insulin signaling is extensively studied in peripheral tissues while comparatively understudied in neuronal cells. AMPK is considered to be a fuel gauge of our body and activation of the same has been reported to increase insulin sensitivity in skeletal muscles thereby increasing glucose transport. However its role in neuronal insulin signaling is not established yet. Here we report positive regulation of insulin signaling as well as glucose uptake by AICAR, a pharmacological activator of AMPK, in cultured Neuro-2a cells in vitro. Compound C, a specific AMPK inhibitor, completely blocked the potentiating effects of AICAR on insulin signaling and glucose uptake, thus suggesting that AMPK mediates effects of AICAR on insulin signaling. Our study provides valuable insight in understanding the role of AMPK in neuronal insulin signal transduction.  相似文献   

6.
5'-AMP-activated protein kinase (AMPK), by way of its inhibition of acetyl-CoA carboxylase (ACC), plays an important role in regulating malonyl-CoA levels and the rate of fatty acid oxidation in skeletal and cardiac muscle. In these tissues, LKB1 is the major AMPK kinase and is therefore critical for AMPK activation. The purpose of this study was to determine how the lack of muscle LKB1 would affect malonyl-CoA levels and/or fatty-acid oxidation. Comparing wild-type (WT) and skeletal/cardiac muscle-specific LKB1 knockout (KO) mice, we found that the 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR)-stimulated decrease in malonyl-CoA levels in WT heart and quadriceps muscles was entirely dependent on the presence of LKB1, as was the AICAR-induced increase in fatty-acid oxidation in EDL muscles in vitro, since these responses were not observed in KO mice. Likewise, the decrease in malonyl-CoA levels after muscle contraction was attenuated in KO gastrocnemius muscles, suggesting that LKB1 plays an important role in promoting the inhibition of ACC, likely by activation of AMPK. However, since ACC phosphorylation still increased and malonyl-CoA levels decreased in KO muscles (albeit not to the levels observed in WT mice), whereas AMPK phosphorylation was entirely unresponsive, LKB1/AMPK signaling cannot be considered the sole mechanism for inhibiting ACC during and after muscle activity. Regardless, our results suggest that LKB1 is an important regulator of malonyl-CoA levels and fatty acid oxidation in skeletal muscle.  相似文献   

7.
Rat hearts were perfused for 1 h with 5 mm glucose with or without palmitate or oleate at concentrations characteristic of the fasting state. The inclusion of fatty acids resulted in increased activities of the alpha-1 or the alpha-2 isoforms of AMP-activated protein kinase (AMPK), increased phosphorylation of acetyl-CoA carboxylase and a decrease in the tissue content of malonyl-CoA. Activation of AMPK was not accompanied by any changes in the tissue contents of ATP, ADP, AMP, phosphocreatine or creatine. Palmitate increased phosphorylation of Thr172 within AMPK alpha-subunits and the activation by palmitate of both AMPK isoforms was abolished by protein phosphatase 2C leading to the conclusion that exposure to fatty acid caused activation of an AMPK kinase or inhibition of an AMPK phosphatase. In vivo, 24 h of starvation also increased heart AMPK activity and Thr172 phosphorylation of AMPK alpha-subunits. Perfusion with insulin decreased both alpha-1 and alpha-2 AMPK activities and increased malonyl-CoA content. Palmitate prevented both of these effects. Perfusion with epinephrine decreased malonyl-CoA content without an effect on AMPK activity but prevented the activation of AMPK by palmitate. The concept is discussed that activation of AMPK by an unknown fatty acid-driven signalling process provides a mechanism for a 'feed-forward' activation of fatty acid oxidation.  相似文献   

8.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

9.
Exercise acutely stimulates muscle glucose transport and also brings about an adaptive increase in the capacity of muscle for glucose uptake by inducing increases in GLUT-4 and hexokinase.(1) Recent studies have provided evidence that activation of AMP protein kinase (AMPK) is involved in the stimulation of glucose transport by exercise. The purpose of this study was to determine whether activation of AMPK is also involved in mediating the adaptive increases in GLUT-4 and hexokinase. To this end, we examined the effect of incubating rat epitrochlearis muscles in culture medium for 18 h in the presence or absence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which enters cells and is converted to the AMP analog ZMP, thus activating AMPK. Exposure of muscles to 0.5 mM AICAR in vitro for 18 h resulted in an approximately 50% increase in GLUT-4 protein and an approximately 80% increase in hexokinase. This finding provides strong evidence in support of the hypothesis that the activation of AMPK that occurs in muscle during exercise is involved in mediating the adaptive increases in GLUT-4 and hexokinase.  相似文献   

10.
Physical activity is known to increase insulin action in skeletal muscle, and data have indicated that 5'-AMP-activated protein kinase (AMPK) is involved in the molecular mechanisms behind this beneficial effect. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) can be used as a pharmacological tool to repetitively activate AMPK, and the objective of this study was to explore whether the increase in insulin-stimulated glucose uptake after either long-term exercise or chronic AICAR administration was followed by fiber-type-specific changes in insulin signaling and/or changes in GLUT-4 expression. Wistar rats were allocated into three groups: an exercise group trained on treadmill for 5 days, an AICAR group exposed to daily subcutaneous injections of AICAR, and a sedentary control group. AMPK activity, insulin-stimulated glucose transport, insulin signaling, and GLUT-4 expression were determined in muscles characterized by different fiber type compositions. Both exercised and AICAR-injected animals displayed a fiber-type-specific increase in glucose transport with the most marked increase in muscles with a high content of type IIb fibers. This increase was accompanied by a concomitant increase in GLUT-4 expression. Insulin signaling as assessed by phosphatidylinositol 3-kinase and PKB/Akt activity was enhanced only after AICAR administration and in a non-fiber-type-specific manner. In conclusion, chronic AICAR administration and long-term exercise both improve insulin-stimulated glucose transport in skeletal muscle in a fiber-type-specific way, and this is associated with an increase in GLUT-4 content.  相似文献   

11.
The aim of this study was to investigate the acute effects of troglitazone on several pathways of glucose and fatty acid (FA) partitioning and the molecular mechanisms involved in these processes in skeletal muscle. Exposure of L6 myotubes to troglitazone for 1 h significantly increased phosphorylation of AMPK and ACC, which was followed by approximately 30% and approximately 60% increases in palmitate oxidation and carnitine palmitoyl transferase-1 (CPT-1) activity, respectively. Troglitazone inhibited basal ( approximately 25%) and insulin-stimulated ( approximately 35%) palmitate uptake but significantly increased basal and insulin-stimulated glucose uptake by approximately 2.2- and 2.7-fold, respectively. Pharmacological inhibition of AMPK completely prevented the effects of troglitazone on palmitate oxidation and glucose uptake. Interestingly, even though troglitazone exerted an insulin sensitizing effect, it reduced basal and insulin-stimulated rates of glycogen synthesis, incorporation of glucose into lipids, and glucose oxidation to values corresponding to approximately 30%, approximately 60%, and 30% of the controls, respectively. These effects were accompanied by an increase in basal and insulin-stimulated phosphorylation of Akt(Thr308), Akt(Ser473), and GSK3alpha/beta. Troglitazone also powerfully suppressed pyruvate decarboxylation, which was followed by a significant increase in basal ( approximately 3.5-fold) and insulin-stimulated ( approximately 5.5-fold) rates of lactate production by muscle cells. In summary, we provide novel evidence that troglitazone exerts acute insulin sensitizing effects by increasing FA oxidation, reducing FA uptake, suppressing pyruvate dehydrogenase activity, and shifting glucose metabolism toward lactate production in muscle cells. These effects seem to be at least partially dependent on AMPK activation and may account for potential acute PPAR-gamma-independent anti-diabetic effects of thiazolidinediones in skeletal muscle.  相似文献   

12.
Leptin regulates fatty acid metabolism in liver, skeletal muscle, and pancreas by partitioning fatty acids into oxidation rather than triacylglycerol (TG) storage. Although leptin receptors are present in the heart, it is not known whether leptin also regulates cardiac fatty acid metabolism. To determine whether leptin directly regulates cardiac fatty acid metabolism, isolated working rat hearts were perfused with 0.8 mm [9,10-(3)H]palmitate and 5 mm [1-(14)C]glucose to measure palmitate and glucose oxidation rates. Leptin (60 ng/ml) significantly increased palmitate oxidation rates 60% above control hearts (p < 0.05) and decreased TG content by 33% (p < 0.05) over the 60-min perfusion period. In contrast, there was no difference in glucose oxidation rates between leptin-treated and control hearts. Although leptin did not affect cardiac work, oxygen consumption increased by 30% (p < 0.05) and cardiac efficiency was decreased by 42% (p < 0.05). AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac fatty acid oxidation by inhibiting acetyl-CoA carboxylase (ACC) and reducing malonyl-CoA levels. Leptin has also been shown to increase fatty acid oxidation in skeletal muscle through the activation of AMPK. However, we demonstrate that leptin had no significant effect on AMPK activity, AMPK phosphorylation state, ACC activity, or malonyl-CoA levels. AMPK activity and its phosphorylation state were also unaffected after 5 and 10 min of perfusion in the presence of leptin. The addition of insulin (100 microunits/ml) to the perfusate reduced the ability of leptin to increase fatty acid oxidation and decrease cardiac TG content. These data demonstrate for the first time that leptin activates fatty acid oxidation and decreases TG content in the heart. We also show that the effects of leptin in the heart are independent of changes in the AMPK-ACC-malonyl-CoA axis.  相似文献   

13.
The aim of this study was to investigate the chronic effects of palmitate on fatty acid (FA) oxidation, AMPK/ACC phosphorylation/activation, intracellular lipid accumulation, and the molecular mechanisms involved in these processes in skeletal muscle cells. Exposure of L6 myotubes for 8 h to 200, 400, 600, and 800 microM of palmitate did not affect cell viability but significantly reduced FA oxidation by approximately 26.5%, approximately 43.5%, approximately 50%, and approximately 47%, respectively. Interestingly, this occurred despite significant increases in AMPK ( approximately 2.5-fold) and ACC ( approximately 3-fold) phosphorylation and in malonyl-CoA decarboxylase activity ( approximately 38-60%). Low concentrations of palmitate (50-100 microM) caused an increase ( approximately 30%) in CPT-1 activity. However, as the concentration of palmitate increased, CPT-1 activity decreased by approximately 32% after exposure for 8 h to 800 microM of palmitate. Although FA uptake was reduced ( approximately 35%) in cells exposed to increasing palmitate concentrations, intracellular lipid accumulation increased in a dose-dependent manner, reaching values approximately 2.3-, approximately 3-, and 4-fold higher than control in muscle cells exposed to 400, 600, and 800 microM palmitate, respectively. Interestingly, myotubes exposed to 400 microM of palmitate for 1 h increased basal glucose uptake and glycogen synthesis by approximately 40%. However, as time of incubation in the presence of palmitate progressed from 1 to 8 h, these increases were abolished and a time-dependent inhibition of insulin-stimulated glucose uptake ( approximately 65%) and glycogen synthesis ( approximately 30%) was observed in myotubes. These findings may help explain the dysfunctional adaptations that occur in glucose and FA metabolism in skeletal muscle under conditions of chronically elevated circulating levels of non-esterified FAs, such as in obesity and Type 2 Diabetes.  相似文献   

14.
The AMP-activated protein kinase (AMPK) plays an important role in fuel metabolism in exercising skeletal muscle and possibly in the islet cell with respect to insulin secretion. Some of these effects are due to AMPK-mediated regulation of cellular malonyl-CoA content, ascribed to the ability of AMPK to phosphorylate and inactivate acetyl-CoA carboxylase (ACC), reducing malonyl-CoA formation. It has been suggested that AMPK may also regulate malonyl-CoA content by activation of malonyl-CoA decarboxylase (MCD). We have investigated the potential regulation of MCD by AMPK in exercising skeletal muscle, in an islet cell line, and in vitro. Three rat fast-twitch muscle types were studied using two different contraction methods or after exposure to the AMPK activator AICAR. Although all muscle treatments resulted in activation of AMPK and phosphorylation of ACC, no stimulus had any effect on MCD activity. In 832/13 INS-1 rat islet cells, two treatments that result in the activation of AMPK, namely low glucose and AICAR, also had no discernable effect on MCD activity. Last, AMPK did not phosphorylate in vitro either recombinant MCD or MCD immunoprecipitated from skeletal muscle or heart. We conclude that MCD is not a substrate for AMPK in fast-twitch muscle or the 832/13 INS-1 islet cell line and that the principal mechanism by which AMPK regulates malonyl-CoA content is through its regulation of ACC.  相似文献   

15.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

16.
AMPK regulates many metabolic pathways including fatty acid and glucose metabolism, both of which are closely associated with insulin secretion in pancreatic β-cells. Insulin secretion is regulated by metabolic coupling factors such as ATP/ADP ratio and other metabolites generated by the metabolism of nutrients such as glucose, fatty acid and amino acids. However, the connection between AMPK activation and insulin secretion in β-cells has not yet been fully elucidated at a metabolic level. To study the effect of AMPK activation on glucose stimulated insulin secretion, we applied the pharmacological activator 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to an INS-1 (832/13) β-cell line. We measured the change in 66 metabolites in the presence or absence of AICAR using different stable isotopic labeled nutrients to probe selected pathways. AMPK activation by AICAR increased basal insulin secretion and reduced the glucose stimulation index. Although ATP/ADP ratios were not strongly affected by AICAR, several other metabolites and pathways important for insulin secretion were affected by AICAR treatment including long-chain CoAs, malonyl-CoA, 3-hydroxy-3 methylglutaryl CoA, diacylglycerol, and farnesyl pyrophosphate. Tracer studies using 13C-glucose revealed lower glucose flux in the purine and pyrimidine pathway and in the glycerolipid synthesis pathway. Untargeted metabolomics revealed reduction in ceramides caused by AICAR that may explain the beneficial role of AMPK in protecting β-cells from lipotoxicity. Taken together, the results provide an overall picture of the metabolic changes associated with AICAR treatment and how it modulates insulin secretion and β-cell survival.  相似文献   

17.
Diabetic db/db mice exhibit profound insulin resistance in vivo, but the specific degree of cardiac insensitivity to insulin has not been assessed. Therefore, the effect of insulin on cardiomyocytes from db/db hearts was assessed by measuring two metabolic responses (deoxyglucose uptake and fatty acid oxidation) and the phosphorylation of two enzymes in the insulin-signaling cascade [Akt and AMP-activated protein kinase (AMPK)]. Maximal insulin-stimulated deoxyglucose transport was reduced to 58 and 40% of control in cardiomyocytes from db/db mice at two ages (6 and 12 wk). Insulin-stimulated deoxyglucose uptake was also reduced in myocytes from transgenic db/db mice overexpressing the insulin-sensitive glucose transporter (db/db-hGLUT4). Treatment of db/db mice for 1 wk with an insulin-sensitizing peroxisome proliferator-activated receptor-gamma agonist (COOH) completely normalized insulin-stimulated deoxyglucose uptake. Insulin had no direct effect on palmitate oxidation by either control or db/db cardiomyocytes, but the combination of insulin and glucose reduced palmitate oxidation, likely an indirect effect secondary to increased glucose uptake. Insulin had no effect on AMPK phosphorylation from either control or db/db cardiomyocytes. Insulin increased the phosphorylation of Akt in all cardiomyocyte preparations (control, db/db, COOH-treated db/db) to the same extent. Thus insulin has selective metabolic actions in mouse cardiomyocytes; deoxyglucose uptake and Akt phosphorylation are increased, but fatty acid oxidation and AMPK phosphorylation are unchanged. Insulin resistance in db/db cardiomyocytes is manifested by reduced insulin-stimulated deoxyglucose uptake.  相似文献   

18.
Muscle contractile activity is associated with an acceleration of glucose transport into muscle. It has been reported that the acceleration of glucose uptake by contractile activity in perfused rat muscles requires the presence of insulin in the perfusate. This claim was investigated using the perfused rat hindlimb preparation in the present study. Rats were made diabetic by injection of 125 mg/kg of streptozotocin and either studied 72 h later or maintained on insulin for 2 wk and then studied 3 days after cessation of insulin therapy. Only rats with plasma insulin levels too low to measure were used. The hindlimbs were washed out with 630 ml of medium over 75 min using a single flow-through washout before muscle stimulation. Despite the absence of insulin in the perfusion medium, stimulation of muscle contraction resulted in large increases in glucose uptake in both the diabetic and control rats. These findings do not support the claim that the stimulatory effect of muscle contraction on glucose uptake by perfused rat muscles requires the presence of insulin.  相似文献   

19.
Enhanced contractile activity increases cardiac long-chain fatty acid (LCFA) uptake via translocation of CD36 to the sarcolemma, similarly to increase in glucose uptake via GLUT4 translocation. AMP-activated protein kinase (AMPK) is assumed to mediate contraction-induced LCFA utilization. However, which catalytic isoform (AMPKα1 versus AMPKα2) is involved, is unknown. Furthermore, no studies have been performed on the role of LKB1, a kinase with AMPKK activity, on the regulation of cardiac LCFA utilization. Using different mouse models (AMPKα2-kinase-dead, AMPKα2-knockout and LKB1-knockout mice), we tested whether LKB1 and/or AMPK are required for stimulation of LCFA and glucose utilization upon treatment of cardiomyocytes with compounds (oligomycin/AICAR/dipyridamole) which induce CD36 translocation similar to that seen upon contraction. In AMPKα2- kinase-dead cardiomyocytes, the stimulating effects of oligomycin and AICAR on palmitate and deoxyglucose uptake and palmitate oxidation were almost completely lost. Moreover, in AMPKα2- and LKB1-knockout cardiomyocytes, oligomycin-induced LCFA and deoxyglucose uptake were completely abolished. However, the stimulatory effect of dipyridamole on palmitate uptake and oxidation was preserved in AMPKα2-kinase-dead cardiomyocytes. In conclusion, in the heart there is a signaling axis consisting of LKB1 and AMPKα2 which activation results in enhanced LCFA utilization, similarly to enhanced glucose uptake. In addition, an unknown dipyridamole-activated pathway can stimulate cardiac LCFA utilization by activating signaling components downstream of AMPK.  相似文献   

20.
AMP-activated protein kinase (AMPK) is a key signaling protein in the regulation of skeletal muscle glucose uptake, but its role in mediating contraction-induced glucose transport is still debated. The effect of contraction on glucose transport is impaired in EDL muscle of transgenic mice expressing a kinase-dead, dominant negative form of the AMPKalpha(2) subunit (KD-AMPKalpha(2) mice). However, maximal force production is reduced in this muscle, raising the possibility that the defect in glucose transport was due to a secondary decrease in force production and not impaired AMPKalpha(2) activity. Generation of force-frequency curves revealed that muscle force production is matched between wild-type (WT) and KD-AMPKalpha(2) mice at frequencies < or =50 Hz. Moreover, AMPK activation is already maximal at 50 Hz in muscles of WT mice. When EDL muscles from WT mice were stimulated at a frequency of 50 Hz for 2 min (200-ms train, 1/s, 30 volts), contraction caused an approximately 3.5-fold activation of AMPKalpha(2) activity and an approximately 2-fold stimulation of glucose uptake. Conversely, whereas force production was similar in EDL of KD-AMPKalpha(2) animals, no effect of contraction was observed on AMPKalpha(2) activity, and glucose uptake stimulation was reduced by 50% (P < 0.01) As expected, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranosyl 5'-monophosphate (AICAR) caused a 2.3-fold stimulation of AMPKalpha(2) activity and a 1.7-fold increase in glucose uptake in EDL from WT mice, whereas no effect was detected in muscle from KD-AMPKalpha(2) mice. These data demonstrate that AMPK activation is essential for both AICAR and submaximal contraction-induced glucose transport in skeletal muscle but that AMPK-independent mechanisms are also involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号