首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The ligand-binding domain of the epidermal growth factor (EGF) receptor is separated from the cytoplasmic protein tyrosine kinase domain by a predicted single transmembrane segment. Antipeptide antibodies prepared against the outer portion of the predicted transmembrane segment confirmed this area was exposed only when cells were treated with permeabilizing agents. To investigate structural requirements for signal transduction by the transmembrane domain, three types of mutant EGF receptor were prepared. The first type was designed to shorten the transmembrane domain, the second to place proline substitutions within this domain, and the third to make amino acid substitutions analogous to those present in the transforming c-erbB2/neu oncoprotein. Mutant human receptors were expressed in null recipient mouse B82L and Chinese hamster ovary cells. All receptors bound EGF and exhibited EGF-stimulated protein tyrosine kinase activity in vivo as assayed using a 125I-labeled monoclonal anti-phosphotyrosine antibody. EGF stimulated growth of cells expressing each mutant receptor with similar dose-response characteristics. In contrast to other growth factor receptors, the transmembrane domain of the EGF receptor is tolerant to a variety of changes which neither mimic EGF action by constitutive activation nor interfere with ligand-induced signal transduction.  相似文献   

2.
The epidermal growth factor (EGF) receptor is regulated by EGF-stimulated autophosphorylation and by phorbol ester-stimulated, protein kinase C (Ca2+/phospholipid-dependent enzyme) mediated phosphorylation at identified sites. The EGF receptor contains additional phosphorylation sites including a prominent phosphothreonine and several phosphoserines which account for the majority of phosphate covalently bound to the receptor in vivo. We have identified three of these sites in EGF receptor purified from 32P-labeled A431 cells. The major phosphothreonine was identified as threonine 669 in the EGF receptor sequence. Phosphoserine residues were identified as serines 671 and 1046/1047 of the EGF receptor. Two other phosphoserine residues were localized to tryptic peptides containing multiple serine residues located carboxyl-terminal to the conserved protein kinase domain. The amino acid sequences surrounding the three identified phosphorylation sites are highly conserved in the EGF receptor and the protein products of the v-erb B and neu oncogenes. Analysis of predicted secondary structure of the EGF receptor reveals that all of the phosphorylation sites are located near beta turns. In A431 cells phosphorylation of the serine residues was dependent upon serum. In mouse B82 L cells transfected with a wild type human EGF receptor. EGF increased the 32P content in all tryptic phosphopeptides. A mutant EGF receptor lacking protein tyrosine kinase activity was phosphorylated only at threonine 669. Regulated phosphorylation of the EGF receptor at these threonine and serine residues may influence aspects of receptor function.  相似文献   

3.
Intact A431 cells were labeled with [gamma-32P]ATP. The major phosphorylation product of the ecto-kinase activity of A431 cells had the molecular mass of 170 kd and was identified as EGF receptor by specific immunoprecipitation. This phosphorylation was not stimulated by EGF added to the reaction buffer, but replacement of MgCl2 by MnCl2 in the buffer remarkably stimulated phosphorylation. An exogenous protein substrate, alpha-casein, was also phosphorylated by intact A431 cells. The analyses for phospho-amino acids of both EGF receptor and alpha-casein revealed that phosphorylation occurred mainly at phosphotyrosine residues. Tryptic phospho-peptides of the EGF receptor of intact A431 cells labeled with [gamma-32P]ATP were fractionated by HPLC. The elution patterns were essentially the same as that of the autophosphorylated EGF receptor, indicating that the phosphorylation sites of EGF receptor labeled in vivo with [gamma-32P]ATP are located in three tyrosine residues in the carboxyl terminus. These results indicate that the carboxyl-terminal tyrosine kinase domain of a small fraction of the EGF receptor molecules of an A431 cell is exposed on the outer surface of the cells.  相似文献   

4.
Vitamin K-3 or 12-O-tetradecanoylphorbol 13-acetate (TPA) reduced the binding of epidermal growth factor (EGF) to its receptor by more than 90% in human foreskin fibroblasts. After the equilibration of fibroblasts with [32P]orthophosphate, vitamin K-3 or TPA markedly increased the amount of 32P found in the receptor; the increase was principally due to serine and threonine phosphorylation. By the use of two-dimensional tryptic phosphopeptide mapping, using a synthetic phosphopeptide as a standard, threonine-654 was identified as one of the residues whose phosphorylation state was elevated by vitamin K-3 or TPA. Because of the large amounts of EGF receptor present on A431 human carcinoma cells, these cells were used to study further the relationship between the phosphorylation state of threonine-654, the tyrosine phosphorylation state of the receptor, and the receptor's protein tyrosine kinase activity toward exogenous substrates. Vitamin K-3 and TPA both increased the amount of phosphate on threonine-654 in A431 cells. However, whereas receptor from TPA-treated cells lacked phosphotyrosine, vitamin K-3-treated cells contained receptor with markedly elevated levels of phosphotyrosine. The addition of vitamin K-3, TPA or EGF to intact A431 cells followed by homogenization of the cells and the assay of EGF receptor protein tyrosine kinase activity by the use of a synthetic peptide substrate resulted in marked decreases in apparent receptor kinase activity. Therefore, assuming that the activity measured in the peptide assay reflects the protein tyrosine kinase activity of the receptor in the intact cell, the activity of the EGF receptor kinase cannot be deduced from the amount of phosphotyrosine associated with the receptor.  相似文献   

5.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

6.
Biological responses to epidermal growth factor (EGF) depend on the ligand-stimulated protein tyrosine kinase activity of its receptor. To further characterize the enzymatic activity of the EGF receptor, the baculovirus expression system was used to express the cytoplasmic protein tyrosine kinase domain of the EGF receptor. Spodoptera frugiperda (Sf9) cells infected with recombinant baculovirus correctly expressed an active tyrosine kinase domain of the EGF receptor as demonstrated by 35S metabolic labeling, immunoblotting with anti-EGF receptor and anti-phosphotyrosine antibodies, and autophosphorylation analysis. The kinase domain (Mr 66,000) was purified to near homogeneity using a monoclonal anti-phosphotyrosine antibody column, providing 0.5 mg of kinase domain/liter of Sf9 cells (23% yield). The purified kinase domain exhibited a strong preference for Mn2+ compared to Mg2+. The specific activity of the kinase domain was low compared to purified, EGF-activated EGF receptor. However, the addition of sphingosine or ammonium sulfate greatly increased the activity of the kinase domain to equal or exceed the activity of ligand-activated holo EGF receptor. These results indicate that the addition of sphingosine or ammonium sulfate to the purified kinase domain can mimic the effect of EGF to induce a conformation of the holo EGF receptor which is optimal for tyrosine kinase activity. Deletion of the ligand binding domain, analogous to that which occurs in erb B, is not sufficient to fully activate the kinase, implying that EGF causes conformational changes additional to removal of an inhibitory constraint.  相似文献   

7.
In human epidermoid carcinoma KB cells, a glycoprotein of Mr = 190,000 (gp190) has been shown to be phosphorylated on tyrosine residues upon EGF stimulation (Kadowaki et al., 1987, J. Biol. Chem. in press). Using a specific antibody to the c-terminal portion of the human c-erbB-2 gene product, we have found that gp190 is the human c-erbB-2 gene product which is structurally closely related to the epidermal growth factor (EGF) receptor. Since monoclonal antibody specific for the EGF receptor abolished both EGF binding to its receptor and tyrosine phosphorylation of the c-erbB-2 gene product, we have concluded that activation of EGF receptor tyrosine kinase activity upon EGF binding leads to the phosphorylation of the c-erbB-2 gene product on its tyrosine residues.  相似文献   

8.
To investigate the functional significance of epidermal growth factor (EGF) receptor phosphorylation, experimental systems were explored in which receptor phosphorylation on tyrosine and serine/threonine could be differentially stimulated. Exposure of A431 cells to 20 nM EGF at 37 degrees C results in phosphorylation of serine, threonine, and tyrosine sites on the receptor. Monoclonal antibody (mAb) 225 binds to the EGF receptor with affinity comparable to EGF and competes with the binding of EGF. Exposure of A431 cells to 20 nM EGF in the presence of 300 nM anti-EGF receptor mAb 225 (15-fold excess) selectively activated serine and threonine phosphorylation of the receptor, but not tyrosine phosphorylation. This observation indicates that EGF-mediated receptor phosphorylation on tyrosine and on serine/threonine residues is dissociable. The intracellular fate of the EGF receptor was examined under conditions that produce different phosphorylation states of receptor amino acids. Exposure of A431 cells to EGF decreased the half-life (T1/2) of the receptor from 17.8 h to 5.6 h, with activation of tyrosine, serine, and threonine phosphorylation. Incubation with mAb 225 augmented the degradation rate (T1/2 = 8.5 h) without activation of receptor phosphorylation. Concurrent exposure to EGF (20 nM) and mAb 225 (300 nM) resulted in comparable enhanced degradation (T1/2 = 9.5 h), with increased phosphorylation only on serine and threonine residues. These results suggest that serine/threonine phosphorylation is irrelevant to the augmentation of receptor degradation. Methylamine, an inhibitor of lysosomal function that did not affect phosphorylation of the EGF receptor, completely protected EGF receptors from rapid degradation induced by EGF, but it only slightly altered the rate of EGF receptor degradation elicited by mAb 225 or by EGF plus 15-fold excess mAb 225. In contrast, mAb 455, which binds to the receptor but does not inhibit EGF binding and EGF-induced activation of phosphorylation on tyrosine, serine, and threonine residues, did not influence EGF-induced rapid, methylamine sensitive degradation of EGF receptor. The results suggest that when EGF receptors are internalized under conditions that do not activate the receptor tyrosine kinase, they are sorted into a nonlysosomal pathway that differs from the methylamine-sensitive lysosomal pathway traversed following activation by EGF. The data indicate the possibility of a function for tyrosine kinase activation and tyrosine autophosphorylation in determining the lysosomal intracellular pathway of EGF receptor processing and degradation.  相似文献   

9.
A monoclonal antibody to the epidermal growth factor (EGF) receptor of A431 cells was obtained after fusion of immunized BALB/c mouse spleen cells with NS-1 myeloma cells. Specific binding of the antibody to the plasma membrane of A431 cells was demonstrated by indirect immunofluorescence and electron microscopy. The antibody did not react with human KB cells, normal rat kidney cells, or Swiss 3T3 cells. The antibody is an IgG3K; it specifically immunoprecipitated a Mr approximately 170,000 protein from radiolabeled A431 cell extracts. This protein is phosphorylated in a EGF-dependent manner in intact A431 cells and in Triton X-100-solubilized plasma membranes. The specificity of the interaction of the antibody with the Mr = 170,000 protein was confirmed by electrophoretic transfer of A431 cell proteins to nitrocellulose followed by incubation with the antibody and 125I-protein A. When 125I-EGF was covalently cross-linked to its receptor, the 125I-EGF-receptor complex was specifically precipitated by the antibody. The monoclonal antibody did not inhibit the binding of 125I-EGF to its receptor in intact A431 cells and also failed to stimulate the phosphorylation of the Triton X-100-solubilized EGF receptor. The results indicate that the antibody and EGF bind to different sites on the EGF receptor. The antibody will be useful for isolating the EGF receptor in an unactivated form.  相似文献   

10.
Regulation of the epidermal growth factor receptor by phosphorylation   总被引:5,自引:0,他引:5  
The receptor for epidermal growth factor (EGF) is a glycosylated transmembrane phosphoprotein that exhibits EGF-stimulable protein tyrosine kinase activity. On EGF stimulation, the receptor undergoes a self-phosphorylation reaction at tyrosine residues located primarily in the extreme carboxyl-terminal region of the protein. Using enzymatically active EGF receptor purified by immunoaffinity chromatography from A431 human epidermoid carcinoma cells, the self-phosphorylation reaction has been characterized as a rapid, intramolecular process which is maximal at 30-37 degrees C and exhibits a very low Km for ATP (0.2 microM). When phosphorylation of exogenous peptide substrates was measured as a function of receptor self-phosphorylation, tyrosine kinase activity was found to be enhanced two to threefold at 1-2 mol of phosphate per mol of receptor. Analysis of the dependence of the tyrosine kinase activity on ATP concentration yielded hyperbolic kinetics when plotted in double-reciprocal fashion, indicating that ATP can serve as an activator of the enzyme. Higher concentrations of peptide substrates were found to inhibit both the self- and peptide phosphorylation, but this inhibition could be overcome by first self-phosphorylating the enzyme. These results suggest that self-phosphorylation can remove a competitive/inhibitory constraint so that certain exogenous substrates can have greater access to the enzyme active site. In addition to self-phosphorylation, the EGF receptor can be phosphorylated on threonine residues by the calcium- and phospholipid-dependent protein kinase C. The sites on the EGF receptor phosphorylated in vitro by protein kinase C are identical to the sites phosphorylated on the receptor isolated from A431 cells exposed to the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. This phosphorylation of the EGF receptor results in a suppression of its tyrosine kinase and EGF binding activities both in vivo and in vitro. The EGF receptor can thus be variably regulated by phosphorylation: self-phosphorylation can enhance tyrosine kinase activity whereas protein kinase C-catalyzed phosphorylation can depress enzyme activity. Because these two phosphorylations account for only a fraction of the phosphate present in the EGF receptor in vivo, other protein kinases can apparently phosphorylate the receptor and these may exert additional controls on EGF receptor/kinase function.  相似文献   

11.
Treatment of A431 human epidermoid cells with epidermal growth factor (EGF; 20 nM) results in decreased proliferation. This is associated with blockage of the cells in the S and/or G2 phases of the cell cycle. We found that tyrphostin, a putative tyrosine kinase inhibitor, in the range of 50 to 100 microM, partially reversed the growth-inhibitory and cell cycle changes induced by EGF. By using high-pressure liquid chromatography with electrochemical detection, we found that tyrphostin was readily incorporated into A431 cells, reaching maximal levels within 1 h. Although tyrphostin (50 to 100 microM) had no effect on high-affinity binding of EGF to its receptor in A431 cells for up to 24 h, the compound partially inhibited EGF-stimulated EGF receptor tyrosine kinase activity. However, this effect was evident only after prolonged treatment of the cells (4 to 24 h) with the drug. When the peak intracellular concentration of tyrphostin occurred (1 h), no inhibition of tyrosine kinase activity was observed. After both 1 and 24 h, tyrphostin was a less effective inhibitor of tyrosine kinase activity than the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate, which almost completely blocked EGF receptor autophosphorylation. On the basis of our data, we hypothesize that tyrphostin is not a competitive inhibitor of the EGF receptor tyrosine kinase in intact cells and that it functions by an indirect mechanism.  相似文献   

12.
We previously showed that the epidermal growth factor (EGF) receptor in human A431 epidermoid carcinoma cells undergoes a slow post-translational modification whereby it acquires (t1/2 = 30-40 min) EGF binding capacity (Slieker, L.J., et. al. (1986) J. Biol. Chem., 261, 15233-15241). This activation occurs in the endoplasmic reticulum and requires core N-linked glycosylation. By employing both anti-EGF receptor and anti-phosphotyrosine antibodies to immunoprecipitate receptor pulse-labeled with [35S]methionine, we demonstrate here that the EGF receptor also acquires tyrosine kinase autophosphorylation activity post-translationally (t1/2 = 10-15 min). The acquisition of tyrosine kinase activity is independent of the acquisition of EGF binding capacity, since it precedes the latter process and does not require N-linked glycosylation.  相似文献   

13.
Transforming growth factor beta (TGF-beta) increased the phosphorylation of the epidermal growth factor (EGF) receptor and inhibited the growth of A431 cells. Incubation with TGF-beta induced maximal EGF receptor phosphorylation to levels 1.5-fold higher than controls. Phosphorylation increased more prominently (4-5-fold) on tyrosine residues as determined by phosphoamino acid analysis and antiphosphotyrosine antibody immunoblotting. The kinase activity of EGF receptor was also elevated 2.5-fold when cells were cultured in the presence of TGF-beta. The antiproliferative effect of TGF-beta on A431 cells was accompanied by prolongation of G0-G1 phase and by morphological changes. TGF-beta augmented the growth inhibition of A431 cells which could be induced by EGF. In parallel, the specific EGF-induced increase in total phosphorylation of the EGF receptor was also augmented in the presence of TGF-beta. In cells cultured with TGF-beta, the phosphorylation of EGF receptor tyrosines induced by 20-min exposure to EGF was further increased 2-3-fold, suggesting additive effects upon receptor phosphorylation. EGF receptor activation by TGF-beta is characterized by kinetics quite distinct from that induced by EGF and therefore appears to take place through an independent mechanism. The TGF-beta-induced elevation in the phosphorylation of the EGF receptor may have a role in the augmented growth inhibition of A431 cells observed in the presence of EGF and TGF-beta.  相似文献   

14.
Previously it was reported (Bremer, E.G., Schlessinger, J., and Hakomori, S.-I. (1986) J. Biol. Chem. 261, 2434-2440) that ganglioside GM3 inhibited epidermal growth factor (EGF)-stimulated phosphorylation of the EGF receptor in Triton X-100-treated preparations of human epidermoid carcinoma (A431) cell membranes. In addition, these authors reported that GM3 inhibited the growth of A431 cells. In contrast, a modified ganglioside, de-N-acetyl GM3, enhanced the EGF-dependent tyrosine kinase activity of the EGF receptor. In this work and in subsequent studies (Hanai, N., Dohi, T., Nores, G. A., and Hakomori, S.-I. (1988) J. Biol. Chem. 263, 6296-6301), the tyrosine kinase activity of the receptor from A431 cell membranes was assayed in the presence of Triton X-100. In this report, we confirm that GM3 inhibited and de-N-acetyl GM3 stimulated EGF receptor autophosphorylation in the presence of Triton X-100. However, in the absence of detergents, ganglioside GM3 inhibited EGF-stimulated receptor autophosphorylation, whereas de-N-acetyl GM3 had no effect on EGF-stimulated receptor autophosphorylation. The effects of these gangliosides on receptor autophosphorylation were measured in both A431 cell plasma membranes and in 3T3 cell membranes permeabilized to [32P]ATP by a freeze-thaw procedure, in intact A431 cells permeabilized with alamethicin, and in intact A431 cells grown in the presence of [32P]orthophosphate. Thus, the inhibitory effect of GM3 on receptor autophosphorylation was demonstrated in the presence and in the absence of detergent; the stimulatory effect of de-N-acetyl GM3 was observed only in the presence of detergent. We also demonstrate that ganglioside GM3 inhibited EGF-stimulated growth of transfected murine fibroblasts (3T3) that express the gene for human EGF receptor (Velu, T. J., Beguinot, L., Vass, W. C., Zhang, K., Pastan, I., and Lowy, D. R. (1989) J. Cell. Biochem. 39, 153-166). De-N-acetyl ganglioside GM3 had no effect on the growth of these cells. Growth of control fibroblasts, which lack endogenous EGF receptors (Pruss, R. M., and Herschman, H. R. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3918-3921), was not affected by the presence of either ganglioside. Similarly, ganglioside GM3, but not de-N-acetyl ganglioside GM3, inhibited the EGF-dependent incorporation of [3H]thymidine into DNA by transfected fibroblasts. Incorporation of labeled thymidine into DNA of control fibroblasts was not affected by the presence of either ganglioside. These studies indicate that ganglioside GM3, but not its deacetylated analogue, can affect EGF receptor kinase activity in intact membranes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. We measured the activity of protein kinase C in A431 cells by determining the incorporation of [32P]phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in [32P] incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phosphorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the [32P] incorporation into threonine-654 reached 50% of the [32P] in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na+/H+ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, we measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na+/H+ exchange by hypertonic medium is independent of protein kinase C activity. Since stimulation of protein kinase C by phorbol diesters results in a decrease in EGF receptor activity, the stimulation of protein kinase C activity by addition of EGF to A431 cells contributes to a feedback mechanism which results in the attenuation of EGF receptor function.  相似文献   

16.
Amiloride directly inhibits growth factor receptor tyrosine kinase activity   总被引:7,自引:0,他引:7  
Addition of amiloride to A431 human epidermoid carcinoma cell membranes inhibited autophosphorylation of the epidermal growth factor (EGF) receptor. The tyrosine phosphorylation of histone H2B catalyzed by an affinity-purified preparation of EGF receptor was also inhibited by amiloride. The inhibition was noncompetitive with respect to histone but competitive with ATP, suggesting that amiloride may act as an ATP analogue which causes the formation of nonproductive enzyme-substrate complexes. The tyrosine phosphorylation of histone H2B catalyzed by the purified EGF receptor was inhibited by amiloride at concentrations identical to those previously reported to block EGF action on cell proliferation (Ki = 350 microM). Amiloride similarly inhibited the tyrosine phosphorylation of the human placental insulin receptor and the platelet-derived growth factor receptor of Swiss 3T3 cells. Immunoprecipitation of the EGF receptor from A431 cells labeled for 24 h with [32P]phosphate demonstrated that amiloride decreased the phosphorylation of the EGF receptor on serine and threonine residues and blocked the effect of EGF to cause phosphorylation of the receptor on tyrosine residues. Phosphoamino acid analysis of total cell proteins indicated that amiloride inhibited the increase in phosphotyrosine levels caused by EGF. We conclude that amiloride directly inhibits the tyrosine kinase activity of the receptors for EGF, insulin, and platelet-derived growth factor in in vitro and can mediate such actions in vivo. This effect of amiloride demonstrates that it is unsuitable as a drug to test the hypothesis that the stimulation of the Na+/H+ antiporter is essential for mitogenic signaling by growth factor receptors.  相似文献   

17.
Monoclonal antibodies against phosphotyrosine were used to study tyrosine phosphorylation in human epidermal carcinoma A431 cells in vivo. Incubation of A431 cells with the epidermal growth factor (EGF) leads to tyrosine phosphorylation of the EGF receptor; the phosphotyrosine content in cellular EGF receptors increases 50-100-fold in the presence of the growth factor. The maximum level of the receptor autophosphorylation is reached on the 5th min and is then held constant during 90-min incubation with EGF. After preincubation of A431 cells with phorbol-12-myristoyl-13-acetate (PMA) or calcium ionophore A23187 the receptor autophosphorylation decreases significantly. After addition of A23187 and EGTA to the preincubation medium the phosphotyrosine content in cellular EGF receptors stimulated by the growth factor reaches the control level i.e., that observed in the absence of the ionophore. After preincubation of cells in the presence of phorbol ester and H-7 (protein kinase C inhibitor) the level of EGF receptor autophosphorylation does not practically differ from that of control.  相似文献   

18.
A431 cells have been used as an immunogen for generating monoclonal antibodies against the epidermal growth factor (EGF) receptor. Two immunoglobulin M and eight immunoglobulin G3 anti-EGF receptor antibodies were cloned. All ten antibodies immunoprecipitated biosynthetically labeled mature A431 cell EGF receptor and were able to recognize the receptor in Western blotting. However, none of the antibodies immunoprecipitated precursor polypeptides of the A431 cell EGF receptor, neither did they recognize EGF receptors from human foreskin fibroblasts, human placenta, nor a human-mouse hybrid cell expressing EGF receptor. The antibodies were found to bind to glycolipids from A431 cells and it was shown that the determinant involved was the blood group A antigen. It appears that this determinant is present on both the EGF receptor and glycolipids of A431 cells but is not expressed on EGF receptors from other human cells tested. One of the monoclonal antibodies raised was used for immunoaffinity purification of the EGF receptor. The procedure took advantage of the carbohydrate nature of the antigenic determinant by employing sugar-specific elution. The mild conditions permitted the purification of A431 cell EGF receptor (70-80% pure) that possessed an intrinsic EGF-stimulated tyrosine kinase activity with a specific activity of about 20 nmol/min/mg.  相似文献   

19.
《The Journal of cell biology》1995,129(6):1543-1558
The aggregation states of the epidermal growth factor receptor (EGFR) on single A431 human epidermoid carcinoma cells were assessed with two new techniques for determining fluorescence resonance energy transfer: donor photobleaching fluorescence resonance energy transfer (pbFRET) microscopy and fluorescence lifetime imaging microscopy (FLIM). Fluorescein-(donor) and rhodamine-(acceptor) labeled EGF were bound to the cells and the extent of oligomerization was monitored by the spatially resolved FRET efficiency as a function of the donor/acceptor ratio and treatment conditions. An average FRET efficiency of 5% was determined after a low temperature (4 degrees C) incubation with the fluorescent EGF analogs for 40 min. A subsequent elevation of the temperature for 5 min caused a substantial increase of the average FRET efficiency to 14% at 20 degrees C and 31% at 37 degrees C. In the context of a two-state (monomer/dimer) model for the EGFR, these FRET efficiencies were consistent with minimal average receptor dimerizations of 13, 36, and 69% at 4, 20, and 37 degrees C, respectively. A431 cells were pretreated with the monoclonal antibody mAb 2E9 that specifically blocks EGF binding to the predominant population of low affinity EGFR (15). The average FRET efficiency increased dramatically to 28% at 4 degrees C, indicative of a minimal receptor dimerization of 65% for the subpopulation of high affinity receptors. These results are in accordance with prior studies indicating that binding of EGF leads to a fast and temperature- dependent microclustering of EGFR, but suggest in addition that the high affinity functional subclass of receptors on quiescent A431 cells are present in a predimerized or oligomerized state. We propose that the transmission of the external ligand-binding signal to the cytoplasmic domain is effected by a concerted relative rotational rearrangement of the monomeric units comprising the dimeric receptor, thereby potentiating a mutual activation of the tyrosine kinase domains.  相似文献   

20.
Epidermal growth factor- (EGF) dependent tyrosine phosphorylation of the EGF receptor was inhibited by the exogenous addition of GM3 to a membrane preparation and to purified EGF receptor adsorbed to antireceptor-antibody-Sepharose (Bremer, E. G., Schlessinger, J., and Hakomori, S. (1986) J. Biol. Chem. 261, 2434-2440). A specific functional correlation between GM3 and EGF receptor function has been further assessed in this study, employing two variant clones of A431 cells showing completely different growth responses to EGF. The A1S clone showed EGF cell growth stimulation and contained GM3 whereas the A5I clone, whose growth was completely inhibited by EGF addition, lacked detectable GM3. Both the endogenous and EGF-dependent receptor tyrosine-kinase activities were low in the A1S clone and were only minimally inhibited by the exogenous addition of GM3. In contrast the EGF receptor kinase activity in A5I cells was much higher and was more strongly inhibited by GM3 than it was in A1S cells. The EGF receptor fraction prepared from A1S cells, eluted from an anti-EGF receptor antibody-Sepharose column, contained GM3, in contrast to the fraction prepared from A5I cells, which lacked detectable GM3. The receptor kinase activity in vitro was greatly influenced by detergent and ATP concentration. GM3 affected the receptor kinase in a biphasic manner, i.e. GM3 was inhibitory at a low concentration of detergent under a physiological concentration of ATP and stimulatory at a high concentration of detergent. In contrast lyso-GM3 displayed a monophasic inhibitory effect under a wide range of detergent concentrations. Lyso-CDH (lactosylsphingosine) had no detectable effect on the receptor kinase activity. The presence of a small quantity of lyso-GM3 in A431 cells was detected after DEAE-Sepharose chromatography followed by high performance liquid chromatography in a n-propanolyl alcohol-ammonia system. It is possible that de-N-fatty acylation of gangliosides could be an effective means to modulate EGF receptor function in membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号