首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bovine pepsin is the second major proteolytic activity of rennet obtained from young calves and is the main protease when it is extracted from adult animals, and it is well recognized that the proteolytic specificity of this enzyme improves the sensory properties of cheese during maturation. Pepsin is synthesized as an inactive precursor, pepsinogen, which is autocatalytically activated at the pH of calf abomasum. A cDNA coding for bovine pepsin was assembled by fusing the cDNA fragments from two different bovine expressed sequence tag libraries to synthetic DNA sequences based on the previously described N-terminal sequence of pepsinogen. The sequence of this cDNA clearly differs from the previously described partial bovine pepsinogen sequences, which actually are rabbit pepsinogen sequences. By cloning this cDNA in different vectors we produced functional bovine pepsinogen in Escherichia coli and Saccharomyces cerevisiae. The recombinant pepsinogen is activated by low pH, and the resulting mature pepsin has milk-clotting activity. Moreover, the mature enzyme generates digestion profiles with α-, β-, or κ-casein indistinguishable from those obtained with a natural pepsin preparation. The potential applications of this recombinant enzyme include cheese making and bioactive peptide production. One remarkable advantage of the recombinant enzyme for food applications is that there is no risk of transmission of bovine spongiform encephalopathy.  相似文献   

2.
1. Two procedures were developed for the preparation of duck pepsinogen, an enzyme from the family of aspartic proteases (EC 3.4.23.1) and its zymogen. 2. The amino acid composition, sugar content and the partial N- and C-terminal sequences of both the enzyme and the zymogen were determined. These sequences are highly homologous with the terminal sequences of chicken pepsin(ogen). 3. Duck pepsinogen and pepsin are unlike other pepsin(ogen)s in being relatively stable in alkaline media: pepsinogen is inactivated at pH 12.1, pepsin at pH 9.6. 4. Duck pepsin is inhibited by diazoacetyl-D,L-norleucine methyl ester (DAN), 1,2-epoxy-3(p-nitrophe-noxy)propane (EPNP), pepstatin and a synthetic pepsin inhibitor Val-D-Leu-Pro-Phe-Phe-Val-D- Leu. The pH-optimum of duck pepsin determined in the presence of synthetic substrate is pH 4. 5. Duck pepsin has a marked milk-clotting activity whereas its proteolytic activity is lower than that of chicken pepsin. 6. The activation of duck pepsinogen is paralleled by two conformational changes. The activation half-life determined in the presence of a synthetic substrate at pH 2 and 14 degrees C is 20 sec.  相似文献   

3.
In order to carry out studies on structure and function relationships of porcine pepsinogen using site-directed mutagenesis approaches, the cDNA of this zymogen was cloned, sequenced, expressed in Escherichia coli, and the protein refolded, and purified to homogeneity. Porcine pepsinogen cDNA, obtained from a lambda gt10 cDNA library of porcine stomach contains 1364 base pairs. It contains leader, pro, and pepsin regions of 14, 44, and 326 residues, respectively. In addition, it also contains 5'- and 3'-untranslated regions. Four differences are present between the sequence deduced from the cDNA and the pepsinogen sequence determined previously by protein chemistry methods. Residues P19 (in the pro region) and 263 are asparagines in the cDNA sequence instead of aspartic acids. Isoleucine 230 is not present in the cDNA sequence and residue 242 is a tyrosine in the cDNA instead of an aspartic acid. Porcine pepsinogen cDNA was placed under the control of a tac promoter in a plasmid and expressed in E. coli. The synthesis of pepsinogen was optimized to about 50 mg/liter of culture. The recombinant (r-) pepsinogen, which was insoluble, was recovered by centrifugation, washed, dissolved in 6 M urea in Tris-HCl, pH 8, and refolded by rapid dilution. r-pepsinogen was purified to homogeneity after chromatography on Sephacryl S-300 and fast protein liquid chromatography on a monoQ column. r-pepsinogen contains an additional methionine residue at the NH2 terminus as compared to native (n-) pepsinogen. However, r- and n-pepsinogens are indistinguishable in their intramolecular activation constants. After activation, r- and n-pepsins have the same NH2-terminal sequences as well as Km values. Based on these data, r-pepsinogen was judged suitable for mutagenesis studies. A mutant pepsinogen (D32A) with the active site aspartic acid changed to an alanine was produced and purified. D32A-pepsinogen did not convert to pepsin in acid solution but it bound to pepstatin with an apparent KD of about 5 x 10(-10) M. D32A-pepsinogen possesses no detectable proteolytic activity. These results indicate that (i) intramolecular pepsinogen activation is accomplished by the pepsin active site, and (ii) unlike subtilisin (Carter, P., and Wells, J. A. (1988) Nature 332, 564-568), the active site mutant of pepsin is not enzymically active.  相似文献   

4.
Pepsinogen was isolated from the gastric mucosa of Trimeresurus flavoviridis (Habu snake) by DEAE-cellulose and DEAE-Sepharose ion-exchange chromatographies, and Sephacryl S-200 gel-chromatography. The yield calculated from the crude extract was 29% with 6.2-fold purification. The purified pepsinogen gave a single band on both native- and SDS-PAGE. As no other active enzyme was detected on the chromatographies, it was concluded that the Habu snake has one major pepsinogen. The molecular mass of the pepsinogen was estimated to be 38 kDa by SDS-PAGE. The sequence of the N-terminal 26 amino acid residues was determined and compared with those of other pepsinogens. The N-terminal structure of Habu snake pepsinogen was more homologous with those of mammalian pepsinogens C than those of mammalian pepsinogens A. The pepsinogen was rapidly converted to pepsin by way of an intermediate form induced by acidification. The optimum pH of Habu snake pepsin for bovine hemoglobin was 1.5-2.0, and it retained full activity at pH 6.2 and 30 degrees C on incubation for 30 min. The optimum temperature for the snake pepsin was 50 degrees C and it was stable at 40 degrees C on incubation for 10 min. The proteolytic activity of the pepsin toward bovine hemoglobin was about two times higher than that of porcine pepsin A, however, the activity toward oxidized bovine insulin B-chain was lower than that of porcine pepsin A, and it did not hydrolyze oligopeptides. The specificity for oxidized bovine insulin B-chain of the pepsin was different from that of porcine pepsin A. Habu snake pepsin was inhibited by pepstatin A but not by serine, cysteine, or metallo protease inhibitors.  相似文献   

5.
Monkey pepsinogen A, monkey progastricsin, and porcine pepsinogen A were activated in the presence of two different protein substrates, namely, reduced and carboxymethylated lysozyme and hemoglobin. In each case, an extensive delay in activation was observed. The intermolecular activation reaction required for the generation of pepsin or gastricsin was strongly inhibited and this inhibition was essentially responsible for the delay. However, the intramolecular reaction required for the generation of the intermediate forms of the proenzymes was scarcely affected. The delay was longer at pH 3.0 than at pH 2.0. Irrespective of the delay in activation of pepsinogen, the digestion of substrates proceeded rapidly, evidence of the significant proteolytic activity of pepsinogen itself. Kinetic experiments demonstrated that pepsinogen changed from an enzymatically inactive species to an active species before the release of the activation segment. The proteolytic activity of the active pepsinogen was highest at pH 2.0, at 37 degrees C and the activity under these conditions was comparable to that of pepsin.  相似文献   

6.
Structures at the proteolytic processing region of cathepsin D   总被引:7,自引:0,他引:7  
The amino acid sequences at the "proteolytic processing regions" of cathepsin Ds have been determined for the enzymes from cows, pigs, and rats in order to deduce the sites of cleavage as well as the function of the proteolytic processing of cathepsin D. For bovine cathepsin D, the "processing region" sequence was determined from a peptide isolated from the single-chain enzyme. The COOH-terminal sequence of the light chain and the NH2-terminal sequence of the heavy chain were also determined. The processing region sequence of porcine cathepsin D was determined from its cDNA structure, and the same structure from rat cathepsin D was determined from the peptide sequence of the single-chain rat enzyme. From sequence homology to other aspartic proteases whose x-ray crystallographic structures are known, such as pepsinogen and penicillopepsin, it is clear that the processing regions are insertions to form an extended beta-hairpin loop between residues 91 and 92 (porcine pepsin numbers). However, the sizes of the processing regions of cathepsin Ds from different species are considerably different. For the enzymes from rats, cows, pigs, and human, the sizes of the processing regions are 6, 9, 9, and 11 amino acid residues, respectively. The amino acid sequences within the processing regions are considerably different. In addition, the proteolytic processing sites were found to be completely different in the bovine and porcine cathepsin Ds. While in the porcine enzyme, an Asn-Ser bond and a Gly-Val bond are cleaved to release 5 residues as a consequence of the processing; in the bovine enzyme, two Ser-Ser bonds are cleaved to release 2 serine residues. These findings would argue that the in vivo proteolytic processing of the cathepsin D single chain is probably not carried out by a specific "processing protease." Model building of the cathepsin D processing region conformation was conducted utilizing the homology between procathepsin D and porcine pepsinogen. The beta-hairpin structure of the processing region was found to (i) interact with the activation peptide of the procathepsin D in a beta-structure and (ii) place the Cys residue in the processing region within disulfide linkage distance to Cys-27 of cathepsin D light chain. These observations support the view that the processing region of cathepsin D may function to stabilize the conformation of procathepsin D and may play a role in its activation.  相似文献   

7.
This paper presents a new system for the soluble expression and characterization of porcine pepsinogen from the methylotrophic yeast Pichia pastoris. The cDNA that encodes the zymogenic form of porcine pepsin (EC 3.4.23.1) was cloned into the EcoRI site of the vector pHIL-S1 downstream from the AOX1 alcohol oxidase promoter. After P. pastoris transformation, colonies were screened for expression of pepsinogen based on enzyme activity of the active form, pepsin. The recombinant enzyme was purified 138-fold by anion exchange and affinity column chromatography. Homogeneity was confirmed through SDS-PAGE, Western blot, and N-terminal sequencing. When compared to commercial pepsin, the recombinant pepsin had similar kinetic profiles, pH/temperature stability, and secondary/tertiary conformation. A glycosylated form was also isolated and found to exhibit kinetic and structural characteristics similar to those of the commercial and wild-type pepsin, but was slightly more thermal stable. The above results indicate that the P. pastoris expression system offers a convenient and efficient means to produce and purify a soluble form of pepsin(ogen).  相似文献   

8.
Summary An expression-secretion vector, pNU100, was constructed, utilizing the promoter and coding sequences for the signal peptide and nine amino-terminal amino acids of the middle wall protein, to produce foreign proteins by protein-producing Bacillus brevis. Expression of swine pepsinogen cDNA in B. brevis was examined with pNU100 as a vector. The recombinant swine pepsinogen synthesized by B. brevis was found to accumulate extracellularly in the form of a soluble protein and to have acid protease activity. The acid protease activity was completely inhibited by pepstatin. Furthermore, the recombinant pepsinogen was converted autocatalytically to pepsin under acidic conditions. This indicates that B. brevis produces a pepsinogen with the same conformation as authentic pepsinogen. Efficient production of the enzyme (11 mg/l) was achieved by regulating the pH of the medium. The enzyme produced by B. brevis remained stable on cultivation for a long period, up to 40 h. This is suggested to be due to a unique property of protein-producing B. brevis, i. e. a deficiency in extracellular protease production.  相似文献   

9.
A clone, pSPcA2, which carries the full-length swine pepsinogen cDNA was isolated. The coding sequence comprised the signal peptide [15 amino acids (aa)], the activation peptide segment (44 aa) and mature pepsin (327 aa). The deduced amino acid sequence agrees with the published sequence with two exceptions. Asparagine instead of aspartate is present at aa positions 19 and 308. Two types of plasmids, pAS and pUCtacSPc series, were constructed for expressing swine pepsinogen cDNA. These plasmids directed the synthesis of polypeptides which were detected by employing an antibody to swine pepsinogen. However, all the polypeptides formed aggregates and showed no acid protease activity. Only the protein directed by pAS5 regained the acid protease activity after renaturation procedures. The activity was completely inhibited by pepstatin. Furthermore, the renatured pAS5 protein was spontaneously converted to pepsin under acidic conditions. The presence of Arg-8 in the activation peptide segment appears important for the stabilization of the pepsinogen molecule.  相似文献   

10.
A protease activity may be determined by means of immunoglobulins. Since proteolytic products apparently do not retain antigenic determinants of the initial substrate, the monitoring of enzymatic process may employ ELISA methods. The ELISA determination of functional activity of specific IgA1 protease has been used not only for detection of this enzyme, but also for measurement of its inhibition constants. IgG adsorbed onto a microplate was used for evaluation of total proteolytic activity. Varying pH values of the reaction medium it is possible to measure activity of neutral, alkaline and acid proteases. This approach was used for estimation total proteolytic activity of neutral proteases in blood serum. Due to high sensitivity of this method it was possible to dilute serum up to the level when serum inhibitors had not blocked enzyme activity. Assay of serum enzyme activity at acidic pH results in activation of pepsinogens and determination of pepsin activity. Measurement of a total level of serum pepsinogen activity may have diagnostic importance in gastroenterology, due to decisive contribution of pepsinogen I to the detectable activity.  相似文献   

11.
Exposure of pepsinogen to acid for less than 2 min yields a product with proteolytic activity. This activity is due to intramolecular and intermolecular formation of pepsin from pepsinogen. We find no evidence for intermolecular proteolytic activity in the zymogen. These conclusions are based upon two sets of experiments. First, chemical cleavage of pepsinogen during short activation is demonstrated by quantitative analysis of the NH2-terminal 2 residues of the pepsin and pepsinogen in an activation mixture. In addition, quantitative NH2-terminal analyses after activation under different conditions confirm our previous inference that the product of unimolecular pepsinogen activation is homogeneous whereas bimolecular activation produces a pepsin product with a variety of NH2 termini. Second, spectral changes which occur upon acidification of a pepsinogen solution and are reversed by neutralization are shown to be consistent with the chemical cleavage of pepsinogen during acidification. The first order rate constant for pepsinogen activation, calculated from these spectral experiments, agrees well with the value we had determined previously.  相似文献   

12.
A crude extract of the proventriculus of the Japanese quail gave at least five bands of peptic activity at pH 2.2 on polyacrylamide gel electrophoresis. The main component, constituting about 40% of the total acid protease activity, was purified to homogeneity by hydroxyapatite and DEAE-Sepharose column chromatographies. At below pH 4.0, the pepsinogen was converted to a pepsin, which had the same electrophoretic mobility as one of the five bands of peptic activity present in the crude extract. The molecular weights of the pepsinogen and the pepsin were 40 000 and 36 000, respectively. Quail pepsin was stable in alkali up to pH 8.5. The optimal pH of the pepsin on hemoglobin was pH 3.0. The pepsin had about half the milk-clotting activity of purified porcine pepsin, but the pepsinogen itself had no activity. The hydrolytic activity of quail pepsin on N-acetyl-L-phenylalanyl-3,5-diiodo-L-tyrosine was about 1% of that of porcine pepsin. Among the various protease inhibitors tested, only pepstatin inhibited the proteolytic activity of the pepsin. The amino acid composition of quail pepsinogen was found to be rather similar to that of chick pepsinogen C, and these two pepsinogens possessed common antigenicity.  相似文献   

13.
Single crystals of porcine pepsinogen, suitable for x-ray diffraction studies, have been grown with lithium sulfate as the precipitant. These pepsinogen crystals were dissolved, activated, and assayed for proteolytic activity. The specific enzymic activity of the dissolved crystalline protein was nearly twice that of the commerical pepsinogen from which the crystals were grown. Incubation at pH 8 before assay demonstrated that the crystals are free of pepsin. This crystal form of pepsinogen belongs to the monoclinic space group C2 with 4 molecules in the unit cell. The unit cell dimensions are a = 104.8 +/- 0.5 A, b = 43.1 +/- 0.1 A, c = 88.4 +/- 0.3 A, and beta = 91.3 degrees.  相似文献   

14.
A method has been described for the isolation and crystallization of swine pepsin inhibitor from swine pepsinogen. Solubility experiments and fractional recrystallization show no drift in specific activity. The reversible combination of pepsin with the inhibitor was found to obey the mass law. The inhibitor is quite specific, failing to act on other proteolytic and milk clotting enzymes. The inhibitor is destroyed by pepsin at pH 3.5. Chemical and physical studies indicate that the inhibitor is a polypeptide of approximately 5,000 molecular weight with an isoelectric point at pH 3.7. It contains arginine, tyrosine, but no tryptophane and has basic groups in its structure.  相似文献   

15.
Primary structure of human pepsinogen gene   总被引:24,自引:0,他引:24  
A recombinant clone, which covers the pepsinogen gene in a single insert, has been isolated by screening a library of human genomic DNA, using a swine pepsinogen cDNA as a probe. Sequence analysis of coding DNA segments of the clone revealed that the pepsinogen gene occupies approximately 9.4-kilobase pairs of the genomic DNA and is separated into nine exons by eight introns of various lengths. The predicted amino acid sequence of human pepsinogen consists of 373 residues and is 82% homologous with that of swine pepsinogen. In addition, the predicted sequence contained a single sequence of 15 amino acid residues at the NH2 terminus, showing that the protein is synthesized as prepepsinogen. The structure of the gene, in which two homologous sequences including the two active site aspartyl residues of pepsin are present in different coding segments, is in support of the view that the pepsinogen gene evolved by duplication of a shorter ancestral gene.  相似文献   

16.
1. Evidence is given for the presence of at least five pepsinogens in a crude extract of mixed chicken stomachs. One of these was purified and could be activated to yield a single pepsin. 2. The molecular weights of the pepsinogen and pepsin were 36000 and 34000 respectively. The pepsin associated at low pH values and low ionic strength. 3. The amino acid analyses of both proteins are given. The pepsin was devoid of phosphate but contained carbohydrate. 4. The N-terminal amino acids of pepsinogen and pepsin were serine and threonine respectively. Five amino acids were released by carboxypeptidase A and it was deduced that serine may be the C-terminal one. 5. Each protein contained one thiol group per molecule as determined by titration with p-chloromercuribenzoate. The rate of the reaction was very rapid with pepsin, but much slower with pepsinogen, although the same group appeared to react in both instances. The enzymic activity of pepsin was unaffected by the modification. 6. The isoionic point of the pepsin was close to pH4.0 and the enzyme was stable for long periods at pH values up to 7.0. 7. The enzyme hydrolysed bisphenyl sulphite almost as rapidly as did pig pepsin A.  相似文献   

17.
The filamentous fungus Trichoderma reesei produces glucuronan lyase (TrGL) when it is grown on beta-(1-->4)-polyglucuronate (cellouronate) as a sole carbon source. The cDNA encoding TrGL was cloned, and the recombinant enzyme was heterologously expressed in Pichia pastoris. The cDNA of TrGL includes a 777-bp open reading frame encoding a 20-amino-acid signal peptide and the 238-amino-acid mature protein. The amino acid sequence showed no similarity to the amino acid sequences of previously described functional proteins, indicating that the enzyme should be classified in a novel polysaccharide lyase (PL) family. Recombinant TrGL catalyzed depolymerization of cellouronate endolytically by beta-elimination and was highly specific for cellouronate. The enzyme was most active at pH 6.5 and 50 degrees C, and its activity and thermostability increased in the presence of Ca2+, suggesting that its calcium dependence is similar to that of other PLs, such as pectate lyases.  相似文献   

18.
It was found that at pH 5.2 and 40-fold excess of p-nitrophenyldiazonium chloride the inhibitor incorporation into the porcine pepsin molecule involves 1.9 residues, one residue being bound to tyrosine 189. Besides, tyrosines 44, 113, 154 and 174 enter the reaction. Modified pepsin retains 25% of the native enzyme activity. In the pepsinogen molecule the degree of tyrosine 189 modification diminishes 5 times; of 1.5 inhibitor molecules incorporated into the protein 0.78 residues are bound to tyrosine 113. The potential proteolytic activity of modified pepsinogen towards haemoglobin cleavage makes up to 60% of the original one. It is concluded that the activation peptide in the pepsinogen molecule masks the substrate binding site bearing tyrosine 189, thus preventing its modification with p-nitrophenyldiazonium chloride. The activation peptide in the pepsinogen molecule is presumably located in the vicinity of the wide loop bend carrying tyrosine residue 113, which may be the reason for the decreased pKa value of this residue and of its increased reactivity in the azocoupling reaction.  相似文献   

19.
Immunochemical Studies on the Components of the Pepsinogen System   总被引:3,自引:0,他引:3       下载免费PDF全文
Rabbit antisera to pepsin and pepsinogen were characterized by several immunological criteria. Both antisera inhibited the rennet activity of pepsin. Antipepsinogen protected pepsin from alkaline denaturation. Using antipepsinogen, precipitin analysis at pH 5.5 indicated that the native enzyme resembles the precursor more closely than did the denatured enzyme. However, all three proteins have some antigenic sites in common. Both antisera reacted more efficiently with their homologous antigens. When measured by C' fixation, the pepsinogen-antipepsinogen system was inhibited by pepsin and to a greater degree, by the activation mixture and the pepsin-inhibitor complex. Pepsin-antipepsin was inhibited by pepsinogen. The specificity of these two antibodies toward pepsin and pepsinogen conformation was used to measure the disappearance of pepsinogen and the concomitant appearance of pepsin during autocatalytic conversion at pH 4.6. The experimental results obtained during the conversion could be duplicated by using varying proportions of pepsin and pepsinogen in the model system. The potentialities of employing these antisera to detect conformational changes such as the unmasking of the pepsin moiety in pepsinogen molecules modified by physical or chemical reagents are discussed.  相似文献   

20.
When Japanese monkey pepsinogen was activated at pH 2.0 in the absence of pepstatin, the activation segment of the amino(N)-terminal 47 residues was released as a single intact polypeptide. This clearly shows that the pepsinogen was activated to pepsin directly. This direct activation was called a 'one-step' process. On the other hand, when pepsinogen was activated at pH 2.0 in the presence of pepstatin, an appreciable amount of pepsinogen was converted to an intermediate form between pepsinogen and pepsin, although a part of pepsinogen was activated directly to pepsin. The intermediate form was generated by releasing the N-terminal 25 residues of pepsinogen. This activation through the intermediate form is thought to be a 'two-step' or 'stepwise-activating' process involving a bimolecular reaction between pepstatin-bound pepsinogen and free pepsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号