首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.  相似文献   

2.
The primary purpose of this study was to determine the effect of prior exercise on insulin-stimulated glucose uptake with physiological insulin in isolated muscles of mice. Male C57BL/6 mice completed a 60-min treadmill exercise protocol or were sedentary. Paired epitrochlearis, soleus, and extensor digitorum longus (EDL) muscles were incubated with [3H]-2-deoxyglucose without or with insulin (60 microU/ml) to measure glucose uptake. Insulin-stimulated glucose uptake for paired muscles was calculated by subtracting glucose uptake without insulin from glucose uptake with insulin. Muscles from other mice were assessed for glycogen and AMPK Thr172 phosphorylation. Exercised vs. sedentary mice had decreased glycogen in epitrochlearis (48%, P < 0.001), soleus (51%, P < 0.001), and EDL (41%, P < 0.01) and increased AMPK Thr172 phosphorylation (P < 0.05) in epitrochlearis (1.7-fold), soleus (2.0-fold), and EDL (1.4-fold). Insulin-independent glucose uptake was increased 30 min postexercise vs. sedentary in the epitrochlearis (1.2-fold, P < 0.001), soleus (1.4-fold, P < 0.05), and EDL (1.3-fold, P < 0.01). Insulin-stimulated glucose uptake was increased (P < 0.05) approximately 85 min after exercise in the epitrochlearis (sedentary: 0.266 +/- 0.045 micromol x g(-1) x 15 min(-1); exercised: 0.414 +/- 0.051) and soleus (sedentary: 0.102 +/- 0.049; exercised: 0.347 +/- 0.098) but not in the EDL. Akt Ser473 and Akt Thr308 phosphorylation for insulin-stimulated muscles did not differ in exercised vs. sedentary. These results demonstrate enhanced submaximal insulin-stimulated glucose uptake in the epitrochlearis and soleus of mice 85 min postexercise and suggest that it will be feasible to probe the mechanism of enhanced postexercise insulin sensitivity by using genetically modified mice.  相似文献   

3.
We determined the effect of an acute bout of swimming (8 x 30 min) followed by either carbohydrate administration (0.5 mg/g glucose ip and ad libitum access to chow; CHO) or fasting (Fast) on postexercise glycogen resynthesis in soleus muscle and liver from female lean (ZL) and obese insulin-resistant (ZO) Zucker rats. Resting soleus muscle glycogen concentration ([glycogen]) was similar between genotypes and was reduced by 73 (ZL) and 63% (ZO) after exercise (P < 0.05). Liver [glycogen] at rest was greater in ZO than ZL (334 +/- 31 vs. 247 +/- 16 micromol/g wet wt; P < 0.01) and fell by 44 and 94% after exercise (P < 0.05). The fractional activity of glycogen synthase (active/total) increased immediately after exercise (from 0.22 +/- 0.05 and 0.32 +/- 0.04 to 0.63 +/- 0.08 vs. 0.57 +/- 0.05; P < 0.01 for ZL and ZO rats, respectively) and remained elevated above resting values after 30 min of recovery. During this time, muscle [glycogen] in ZO increased 68% with CHO (P < 0.05) but did not change in Fast. Muscle [glycogen] was unchanged in ZL from postexercise values after both treatments. After 6 h recovery, GLUT-4 protein concentration was increased above resting levels by a similar extent for both genotypes in both fasted (approximately 45%) and CHO-supplemented (approximately 115%) rats. Accordingly, during this time CHO refeeding resulted in supercompensation in both genotypes (68% vs. 44% for ZL and ZO). With CHO, liver [glycogen] was restored to resting levels in ZL but remained at postexercise values for ZO after both treatments. We conclude that the increased glucose availability with carbohydrate refeeding after glycogen-depleting exercise resulted in glycogen supercompensation, even in the face of muscle insulin-resistance.  相似文献   

4.
We examined whether the protein level and/or activity of glycogenin, the protein core upon which glycogen is synthesized, is limiting for maximal attainable glycogen levels in rat skeletal muscle. Glycogenin activity was 27.5 +/- 1.4, 34.7 +/- 1.7, and 39.7 +/- 1.3 mU/mg protein in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. A similar fiber type dependency of glycogenin protein levels was seen. Neither glycogenin protein level nor the activity of glycogenin correlated with previously determined maximal attainable glycogen levels, which were 69.3 +/- 5.8, 137.4 +/- 10.1, and 80.0 +/- 5.4 micromol/g wet wt in white gastrocnemius, red gastrocnemius, and soleus muscles, respectively. In additional experiments, rats were exercise trained by swimming, which resulted in a significant increase in the maximal attainable glycogen levels in soleus muscles ( approximately 25%). This increase in maximal glycogen levels was not accompanied by an increase in glycogenin protein level or activity. Furthermore, even in the presence of very high glycogen levels ( approximately 170 micromol/g wet wt), approximately 30% of the total glycogen pool continued to be present as unsaturated glycogen molecules (proglycogen). Therefore, it is concluded that glycogenin plays no limiting role for maximal attainable glycogen levels in rat skeletal muscle.  相似文献   

5.
We hypothesized that glycogenesis increases in muscle during exercise before significant glycogen depletion occurs. Therefore, rats ran for 15 or 90 min at speeds of 8-22 m/min. D-[5-3H]glucose (10 microCi/100 g body wt) was administered 10 min before the end of exercise. Hindlimb muscles [soleus (SOL), plantaris (PL), extensor digitorum longus (EDL), and red (RG) and white gastrocnemius (WG)] and a portion of liver were analyzed for glycogen concentrations and rates of glycogen synthesis (i.e., D-[3H]glucose incorporated into glycogen). At rest, marked differences were observed among muscles in their rates of glucose incorporation into glycogen: i.e., SOL = 24.3 +/- 3.1, RG = 5.4 +/- 1.9, PL = 2.8 +/- 1.1, EDL = 0.54 +/- 0.10, WG = 0.12 +/- 0.02 (SE) dpm.micrograms glycogen-1.10 min-1 (P less than 0.05 between respective muscles). Compared with the glucose incorporation into glycogen at rest, increments in the PL (272%), RG (189%), WG (400%), EDL (274%), and liver (175%) were observed after 90 min of exercise (P less than 0.05, all data). In contrast, a decrease in glucose incorporation into glycogen (-62%) occurred in the SOL at min 15 (P less than 0.05), but this returned to the rates observed at rest after 90 min of exercise. This measure for rates of net glycogen synthesis (dpm.microgram glycogen-1.10 min-1) was weakly related to the ambient glycogen levels in most muscles; the exception was the SOL (r = -0.79; P less than 0.05). There was up to a 50-fold difference in glycogen synthesis among muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Insulin-stimulated muscle glucose uptake is inversely associated with the muscle glycogen concentration. To investigate whether this association is a cause and effect relationship, we compared insulin-stimulated muscle glucose uptake in noncontracted and postcontracted muscle of GSL3-transgenic and wild-type mice. GSL3-transgenic mice overexpress a constitutively active form of glycogen synthase, which results in an abundant storage of muscle glycogen. Muscle contraction was elicited by in situ electrical stimulation of the sciatic nerve. Right gastrocnemii from GSL3-transgenic and wild-type mice were subjected to 30 min of electrical stimulation followed by hindlimb perfusion of both hindlimbs. Thirty minutes of contraction significantly reduced muscle glycogen concentration in wild-type (49%) and transgenic (27%) mice, although transgenic mice retained 168.8 +/- 20.5 micromol/g glycogen compared with 17.7 +/- 2.6 micromol/g glycogen for wild-type mice. Muscle of transgenic and wild-type mice demonstrated similar pre- (3.6 +/- 0.3 and 3.9 +/- 0.6 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) and postcontraction (7.9 +/- 0.4 and 7.0 +/- 0.4 micromol.g(-1).h(-1) for transgenic and wild-type, respectively) insulin-stimulated glucose uptakes. However, the [14C]glucose incorporated into glycogen was greater in noncontracted (151%) and postcontracted (157%) transgenic muscle vs. muscle of corresponding wild-type mice. These results indicate that glycogen synthase activity is not rate limiting for insulin-stimulated glucose uptake in skeletal muscle and that the inverse relationship between muscle glycogen and insulin-stimulated glucose uptake is an association, not a cause and effect relationship.  相似文献   

7.
The amount of glycogen and its synthesis from glucose was studied in white muscle (extensor digitorum longus -- EDL) and red muscle (soleus -- SOL) of normal rats and rats with alloxan diabetes by the anthrone method. The amount of glycogen was higher in the white muscle of normal rats, both after a 24 hours' fast (0.37+/-0.02 mg/g as against 0.29+/-0.01 mg/g in the SOL) and with feeding ad libitium (0.72+/-0.05 mg/g as against 0.58+/-0.03 mg/g in the SOL). After a 24 hours' fast, the glycogen content of both muscles was non-significantly higher in alloxan-diabetic rats than in normal animals, whereas in diabetic animals fed ad libitum it was significantly lower than in normal rats fed in the same manner (0.54+/-0.07 mg/g in the EDL and 0.33+/-0.03 mg/g in the SOL). The difference between the glycogen content of the white and red muscle of diabetic rats was also in favour of the white muscle. Muscle glycogenesis from intragastrically administered glucose was higher in the red muscle in all the experimental groups. In normal fed ad libitum the glycogen content of the EDL did not change after glucose administration, but in the SOL it rose from 0.58+/-0.03 to 0.83+/-0.05 mg/g. In fasting (24 hours) normal rats it rose sharply in both muscles, from 0.037+/-0.02 to 0.57+/-0.03 mg/g in the EDL and from 0.29+/-0.01 to 0.87+/-0.06 mg/g in the SOL. In fasting (24 hours) diabetic animals, the glycogen content rose after glucose in the SOL only, from 0.36+/-0.01 to 0.66+/-0.06 mg/g. The differences found in glycogen synthesis in the white and red muscle of normal and diabetic rats are discussed mainly from the aspect of the existence of a relationship between the glycogen concentration and glycogen synthetase activity.  相似文献   

8.
This study was designed to determine whether chronic chemical activation of AMP-activated protein kinase (AMPK) would increase glucose transporter GLUT-4 and hexokinase in muscles similarly to periodic elevation of AMPK that accompanies endurance exercise training. The adenosine analog, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), has previously been shown to be taken up by cells and phosphorylated to form a compound (5-aminoimidazole-4-carboxamide ribonucleotide) that mimics the effect of AMP on AMPK. A single injection of AICAR resulted in a marked increase in AMPK in epitrochlearis and gastrocnemius/plantaris muscles 60 min later. When rats were injected with AICAR (1 mg/g body wt) for 5 days in succession and were killed 1 day after the last injection, GLUT-4 was increased by 100% in epitrochlearis muscle and by 60% in gastrocnemius muscle in response to AICAR. Hexokinase was also increased approximately 2. 5-fold in the gastrocnemius/plantaris. Gastrocnemius glycogen content was twofold higher in AICAR-treated rats than in controls. Chronic chemical activation of AMPK, therefore, results in increases in GLUT-4 protein, hexokinase activity, and glycogen, similarly to those induced by endurance training.  相似文献   

9.
10.
The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.  相似文献   

11.
An isolated perfused rat hindquarter preparation was used to examine the utilization of endogenous triacylglycerol (TG) during 20 min of electrical stimulation. The sciatic nerve was stimulated with maximal tetanic trains at 0.5 Hz. The isometric tension generated by the gastrocnemius-plantaris-soleus muscle group was recorded, and muscle samples were taken pre- and poststimulation. Twenty minutes of stimulation significantly reduced endogenous TG from 6.78 +/- 0.84 to 4.64 +/- 0.64 mumol X g dry wt-1 (32%) in the red gastrocnemius muscle and from 7.70 +/- 0.61 to 6.66 +/- 0.80 mumol X g dry wt-1 (13.5%) in the plantaris muscle. Although TG content decreased by 16% in the soleus (28.2 +/- 5.0 to 23.8 +/- 4.4 mumol X g-1), the change was not significant. Stimulation had no effect on white gastrocnemius TG concentration (6.84 +/- 1.22 to 6.25 +/- 1.41 mumol X g-1). Thus oxidation of TG occurred primarily in muscles with a large proportion of fast-twitch oxidative-glycolytic fibers. Calculations from measurements of muscle energy stores and fuel uptake indicated that up to 62% of the aerobic energy was provided by endogenous TG. Carbohydrate oxidation contributed up to 28% and the remaining 10% may be accounted for by the oxidation of exogenous free fatty acids originating in the perfusate or from hindquarter adipose tissue. The magnitude of the fall in TG concentration in a given muscle was inversely related to the fall in glycogen concentration.  相似文献   

12.
To determine the role of GLUT4 on postexercise glucose transport and glycogen resynthesis in skeletal muscle, GLUT4-deficient and wild-type mice were studied after a 3 h swim exercise. In wild-type mice, insulin and swimming each increased 2-deoxyglucose uptake by twofold in extensor digitorum longus muscle. In contrast, insulin did not increase 2-deoxyglucose glucose uptake in muscle from GLUT4-null mice. Swimming increased glucose transport twofold in muscle from fed GLUT4-null mice, with no effect noted in fasted GLUT4-null mice. This exercise-associated 2-deoxyglucose glucose uptake was not accompanied by increased cell surface GLUT1 content. Glucose transport in GLUT4-null muscle was increased 1.6-fold over basal levels after electrical stimulation. Contraction-induced glucose transport activity was fourfold greater in wild-type vs. GLUT4-null muscle. Glycogen content in gastrocnemius muscle was similar between wild-type and GLUT4-null mice and was reduced approximately 50% after exercise. After 5 h carbohydrate refeeding, muscle glycogen content was fully restored in wild-type, with no change in GLUT4-null mice. After 24 h carbohydrate refeeding, muscle glycogen in GLUT4-null mice was restored to fed levels. In conclusion, GLUT4 is the major transporter responsible for exercise-induced glucose transport. Also, postexercise glycogen resynthesis in muscle was greatly delayed; unlike wild-type mice, glycogen supercompensation was not found. GLUT4 it is not essential for glycogen repletion since muscle glycogen levels in previously exercised GLUT4-null mice were totally restored after 24 h carbohydrate refeeding.-Ryder, J. W., Kawano, Y., Galuska, D., Fahlman, R., Wallberg-Henriksson, H., Charron, M. J., Zierath, J. R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice.  相似文献   

13.
Autophagy, a highly conserved quality control mechanism, is essential for the maintenance of cellular homeostasis and for the orchestration of an efficient cellular response to stress. During aging, the efficiency of autophagic degradation declines, and intracellular waste products accumulate. Therefore, in this study, we tested the hypothesis that skeletal muscle from old mice would have decreased autophagosome formation when compared to the muscle from young mice. We also examined whether autophagic regulatory events differ between muscle fiber types and in response to exercise in aged male mice. The extensor digitorum longus (EDL) and gastrocnemius muscles were studied in young and old ICR mice. Exercise was performed by allowing the mice to run on a treadmill with a 5° incline at 16.4 m/min for 40 min/day, 5 days/week for 8 weeks after a 1-week adaptation period. Our results indicated that the levels of microtubule-associated protein 1b light chain 3, a marker of autophagosome formation, were lower in both the EDL and the gastrocnemius muscle of old mice compared to those young mice. To identify the factors related to the changes observed, the expression of autophagy regulatory proteins was examined in the EDL and gastrocnemius muscles. Beclin-1, autophagy-related gene 7 (ATG7), and lysosome-associated membrane protein were found to be lower in the EDL and gastrocnemius muscles of old mice compared to those in the young mice, then Beclin-1, ATG7, and muscle-specific RING finger protein-1 upregulated after regular exercise. Moreover, the muscle weight/body weight was significantly increased only in the gastrocnemius muscle of the old trained mice. These data suggest that autophagy regulatory events are attenuated in old skeletal muscle. However, this effect is upregulated when animals are subjected to exercise training.  相似文献   

14.
This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  相似文献   

15.
To test the hypothesis that cortisol and epinephrine have direct regulatory roles in muscle glycogen metabolism and to determine what those roles might be, we developed an in vitro white muscle slice preparation from rainbow trout (Oncorhynchus mykiss Walbaum). In the absence of hormones, glycogen-depleted muscle slices obtained from exercised trout were capable of significant glycogen synthesis, and the amount of glycogen synthesized was inversely correlated with the initial postexercise glycogen content. When postexercise glycogen levels were <5 micromol/g, about 4.3 micromol/g of glycogen were synthesized, but when postexercise glycogen levels were >5 micromol/g, only about 1.7 micromol/g of glycogen was synthesized. This difference in the amount of glycogen synthesized was reflected in the degree of activation of glycogen synthase. Postexercise glycogen content also influenced the response of the muscle to 10(-8) M epinephrine and 10(-8) M dexamethasone (a glucocorticoid analog). At high glycogen levels (>5 micromol/g), epinephrine and dexamethasone stimulated glycogen phosphorylase activity and net glycogenolysis, whereas at low (<5 micromol/g) glycogen levels, glycogenesis and activation of glycogen synthase activity prevailed. These data clearly indicate not only is trout muscle capable of in situ glycogenesis, but the amount of glycogen synthesized is a function of initial glycogen content. Furthermore, whereas dexamethasone and epinephrine directly stimulate muscle glycogen metabolism, the net effect is dependent on initial glycogen content.  相似文献   

16.
The purpose of this investigation was to determine whether endurance exercise training increases the ability of human skeletal muscle to accumulate glycogen after exercise. Subjects (4 women and 2 men, 31 +/- 8 yr old) performed high-intensity stationary cycling 3 days/wk and continuous running 3 days/wk for 10 wk. Muscle glycogen concentration was measured after a glycogen-depleting exercise bout before and after endurance training. Muscle glycogen accumulation rate from 15 min to 6 h after exercise was twofold higher (P < 0.05) in the trained than in the untrained state: 10.5 +/- 0.2 and 4.5 +/- 1.3 mmol. kg wet wt(-1). h(-1), respectively. Muscle glycogen concentration was higher (P < 0.05) in the trained than in the untrained state at 15 min, 6 h, and 48 h after exercise. Muscle GLUT-4 content after exercise was twofold higher (P < 0.05) in the trained than in the untrained state (10.7 +/- 1.2 and 4.7 +/- 0.7 optical density units, respectively) and was correlated with muscle glycogen concentration 6 h after exercise (r = 0.64, P < 0.05). Total glycogen synthase activity and the percentage of glycogen synthase I were not significantly different before and after training at 15 min, 6 h, and 48 h after exercise. We conclude that endurance exercise training enhances the capacity of human skeletal muscle to accumulate glycogen after glycogen-depleting exercise.  相似文献   

17.
13C-NMR measurements of muscle glycogen during low-intensity exercise   总被引:2,自引:0,他引:2  
Glycogen metabolism in exercising gastrocnemius muscles was examined by natural abundance 13C nuclear magnetic resonance (NMR) spectroscopy. Five-minute 13C-NMR measurement of muscle glycogen had a reproducibility of +/- 6.5% (+/- 4.8 mM). Experiments were performed on healthy fed male and female subjects. Two protocols were followed. 1) Subjects performed plantar flexion from rest at 15, 20, or 25% of maximum voluntary contraction for up to 9 h. 2) Subjects predepleted gastrocnemius glycogen with heavy exercise and then either performed low-intensity exercise as before or rested. Gastrocnemius glycogen was measured by NMR at rest and after each hour of exercise. In some sessions, both the exercised leg and the nonexercised leg were monitored with 13C-NMR. In protocol 1, blood velocity in the femoral artery was similarly assessed with ultrasonography. During low-intensity exercise from rest (protocol 1) muscle glycogen fell to a new steady-state value after several hours and then remained constant despite continued exercise. Mean blood velocity increased ninefold within 2 min of onset of exercise and remained constant thereafter. After predepletion (protocol 2), muscle glycogen was repleted both during low-intensity exercise and at rest. After 1 h the amount of glycogen repletion was greater when coupled with light exercise [48.5 +/- 2.8 mM after 1 h of exercise, 39.7 +/- 1.1 mM after 1 h of rest (P less than 0.05)]. During subsequent light exercise, glycogen reached a steady-state value similar to that obtained in protocol 1, while in resting, recovery glycogen levels continued to increase (+2.7 mM/h) over a 7-h period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
This study investigated the effect of carbohydrate (CHO) ingestion on postexercise glycogen resynthesis, measured simultaneously in liver and muscle (n = 6) by (13)C magnetic resonance spectroscopy, and subsequent exercise capacity (n = 10). Subjects cycled at 70% maximal oxygen uptake for 83 +/- 8 min on six separate occasions. At the end of exercise, subjects ingested 1 g/kg body mass (BM) glucose, sucrose, or placebo (control). Resynthesis of glycogen over a 4-h period after treatment ingestion was measured on the first three occasions, and subsequent exercise capacity was measured on occasions four through six. No glycogen was resynthesized during the control trial. Liver glycogen resynthesis was evident after glucose (13 +/- 8 g) and sucrose (25 +/- 5 g) ingestion, both of which were different from control (P < 0.01). No significant differences in muscle glycogen resynthesis were found among trials. A relationship between the CHO load (g) and change in liver glycogen content (g) was evident after 30, 90, 150, and 210 min of recovery (r = 0.59-0. 79, P < 0.05). Furthermore, a modest relationship existed between change in liver glycogen content (g) and subsequent exercise capacity (r = 0.53, P < 0.05). However, no significant difference in mean exercise time was found (control: 35 +/- 5, glucose: 40 +/- 5, and sucrose: 46 +/- 6 min). Therefore, 1 g/kg BM glucose or sucrose is sufficient to initiate postexercise liver glycogen resynthesis, which contributes to subsequent exercise capacity, but not muscle glycogen resynthesis.  相似文献   

20.
The author studied the effect of adrenaline (500 mug/kg s.c.) on the glycogen content of white (extensor digitorum longus -- EDL) and red (soleus -- SOL) muscle of normal and alloxan-diabetic rats. In normal rats, whose nutritional state varied at the time of adrenaline administration (after a 24 hours' fast, fed ad libitum or given 5 g glucose/kg as a 20% solution intragastrically 2 hours before injecting adrenaline), no marked post-adrenaline differences were found between the size of the decrease in the amount of glycogen in white and red muscle. In addition, no significant differences were found between the three groups of animals in glycogen concentration in the EDL (0.3+/-0.05, 0.35+/-0.03 and 0.26+/-0.02 mg/g) or in the SOL, apart from one exception (0.23+/-0.02, 0.2+/-0.01, and 0.51+/-0.03 mg/g), after adrenaline. The glycogen concentration in the white and red muscle of diabetic rats fed ad libitum fell to values similar to those in normal rats after adrenaline (0.32+/-0.05 mg/g in the EDL and 0.18+/-0.02 mg/g in the SOL). These results supoort the view of authors who hold that glycogenolysis is possible without pre-activation of phosphorylase; they also support the idea, expressed by Krebs, of the existence of a reciprocal relationship between phosphorylase activity and the glycogen concentration, according to which glycogen itself may influence its own degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号