首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Systemic lupus erythematosus is inherited as a complex polygenic trait. Four genomic intervals containing major SLE-susceptibility loci were previously identified by interval mapping in the NZM2410 mouse model. In this paper, we utilized a marker-assisted selection protocol to produce four congenic mouse strains, each carrying an NZM2410-derived SLE-susceptibility interval on a C57BL/6-resistant background. Each strain carries only one susceptibility allele derived from this polygenic model and consequently can be used to characterize the specific component phenotypes contributed by individual SLE-susceptibility genes. We illustrate the efficacy of this approach with phenotypic data for one of our congenic strains, B6.NZMH2 z . Our results indicate that this single genomic interval from Chromosome (Chr) 17 of NZM2410 can mediate increased levels of IgG autoantibodies specific for chromatin and that, similar to results obtained in our original genetic cross, B6.NZMH2 z/b heterozygotes are more prone than B6.NZMH2 z homozygotes to the development of humoral autoimmunity to nuclear antigens. These results illustrate the feasibility of using congenic strains to dissect the complex pathogenic mechanisms that mediate polygenic SLE. These congenic strains will be valuable tools in the genetic analysis of SLE susceptibility. In future studies, these congenic strains will be interbred to produce bi- and tri-congenic strains in order to assess the role of genetic interactions in the expression of specific components of SLE pathogenesis. They will also be instrumental to the positional cloning and identification of the genes responsible for SLE susceptibility, via the production of congenic recombinants. Received: 1 September 1995 / Accepted: 20 December 1995  相似文献   

2.
Lung tumor susceptibility (LTS) in the mouse is influenced by multiple loci within the H2 complex. We compared the LTS of two H2 congenic strains with intra H2 recombinations, B10.A(1R) and B10.A(2R), whose genetic difference has been reduced to a region of approximately 50 kilobases within the C4-H2D interval, between Hsp70.3 and G7. After transplacental induction with N-ethyl-N-nitrosourea the load of alveolar lung tumors in strain B10.A(2R) is significantly higher than in strain B10.A(1R) (P <0.001). For papillary tumors no significant differences were observed. We conclude that the alveolar lung tumor load is influenced by an LTS gene located within the Hsp70.3-G7 interval.  相似文献   

3.
Inbred strains of mice differ in their susceptibility to excitotoxin‐induced cell death, but the genetic basis of individual variation is unknown. Prior studies with crosses of the FVB/NJ (seizure‐induced cell death susceptible) mouse and the seizure‐induced cell death resistant mouse, C57BL/6J, showed the presence of three quantitative trait loci (QTLs), named seizure‐induced cell death 1 (Sicd1) to Sicd3. To better localize and characterize the Sicd2 locus, two reciprocal congenic mouse strains were created. While the B6.FVB‐Sicd2 congenic mouse was without effect on modifying susceptibility to seizure‐induced excitotoxic cell death, the FVB.B6‐Sicd2 congenic mouse, in which the chromosome (Chr) 15 region of C57BL/6J was introgressed into FVB/NJ, showed reduced seizure‐induced excitotoxic cell death following kainate administration. Phenotypic comparison between FVB and the congenic FVB.B6‐Sicd2 strain confirmed that the Sicd2 interval harbors gene(s) conferring strong protection against seizure‐induced excitotoxic cell death. Interval‐specific congenic lines (ISCLs) that encompass Sicd2 on Chr 15 were generated and were used to fine‐map this QTL. Resultant progeny were treated with kainate and examined for the extent of seizure‐induced cell death in order to deduce the Sicd2 genotypes of the recombinants through linkage analysis. All of the ISCLs exhibited reduced cell death associated with the C57BL/6J phenotype; however, ISCL‐2 showed the most dramatic reduction in seizure‐induced cell death in both area CA3 and in the dentate hilus. These findings confirm the existence of polymorphic loci within the reduced critical region of Sicd2 that regulate the severity of seizure‐induced cell death.  相似文献   

4.
A high-resolution genetic map of the Mus musculus molossinus (MSM) Japanese wild mouse strain was constructed with restriction landmark genomic scanning (RLGS) and compared with that of the laboratory strain C3H. MSM is phylogenetically 1 million years apart from common laboratory mouse strains and is distinctly resistant to chemical carcinogenesis. Since it exhibits frequent genetic polymorphisms with laboratory mice but can still be easily crossed with laboratory strains, hybrids between MSM and carcinogen-sensitive laboratory mouse strains provide excellent materials for analysis of modifier genes and genetic changes during carcinogenesis. We have generated MSM backcross progeny with the C3H strain, which is extremely sensitive to hepatocarcinogenesis, to construct the present map. RLGS profiles with two combinations of restriction enzymes (NotI–PvuII–PstI, NotI–PstI–PvuII) yielded more than 2000 spots each. The polymorphism rate was about 39.2%, and of a total of 1732 polymorphic spot loci identified, 1371 could be assigned to specific chromosomes by comparison with 79 microsatellite marker loci. Thus, 1450 loci, on all chromosomes except for Y, effectively mapped 90% of the genome (1431.7 cM length). Although some spots might be derived from the same NotI site, each NotI site potentially generating two fragments, the presence of at least 515 loci groups with different progeny distribution patterns dispersed through the genome with an average spacing of 3 cM, means that this genetic map should be useful for analysis of various biological phenomena, including carcinogenesis and ontogenesis, at the gene level. Received: 25 August 1999 / Accepted: 20 December 1999  相似文献   

5.
The nonobese diabetic (NOD) mouse strain serves as a genomic standard for assessing how allelic variation for insulin-dependent diabetes (Idd) loci affects the development of autoimmune diabetes. We previously demonstrated that C57BL/6 (B6) mice harbor a more diabetogenic allele than NOD mice for the Idd14 locus when introduced onto the NOD genetic background. New congenic NOD mouse strains, harboring smaller B6-derived intervals on chromosome 13, now localize Idd14 to an ~18-Mb interval and reveal a new locus, Idd31. Notably, the B6 allele for Idd31 confers protection against diabetes, but only in the absence of the diabetogenic B6 allele for Idd14, indicating genetic epistasis between these two loci. Moreover, congenic mice that are more susceptible to diabetes are more resistant to Listeria monocytogenes infection. This result co-localizes Idd14 and Listr2, a resistance locus for listeriosis, to the same genomic interval and indicates that congenic NOD mice may also be useful for localizing resistance loci for infectious disease.  相似文献   

6.
Recombinant inbred (RI) strains are a valuable tool in mouse genetics to rapidly map the location of a new locus. Because RI strains have been typed for hundreds of genetic markers, the genotypes of individual strains within an RI set can be examined to identify specific strain(s) containing the desired region(s) of interest (e.g., one or more quantitative trait loci, QTLs) for subsequent phenotype testing. Specific RI strains might also be identified for use as progenitors in the construction of consomic (chromosome substitution strains or CSSs) or congenic lines or for use in the RI strain test (RIST). To quickly identify the genetic contributions of the parental A/J (A) and C57BL/6J (B) strains, we have generated chromosome maps for each commercially available AXB and BXA RI strain, in which the genetic loci are colorcoded to signify the parent of origin. To further assist in strain selection for further breeding schemes, the percentages of A and B parental contributions were calculated, based on the total number of typed markers in the database for each strain. With these data, one can rapidly select the RI strain(s) carrying the desired donor and recipient strain region(s). Because points of recombination are known, starting with RI mice to generate CSSs or congenic lines immediately reduces genomewide screening to those donor-strain regions not already homozygous in the recipient strain. Two examples are presented to demonstrate potential uses of the generated chromosome maps: to select RI strains to construct congenic lines and to perform an RIST forAliq1, a QTL linked to ozone-induced acute lung injury survival.  相似文献   

7.
Calcification occurs frequently in the development of atherosclerotic lesions, and studies in mice have indicated a genetic contribution. We now show that one genetic factor contributing to aortic calcification is the Dyscalc locus, previously shown to contribute to myocardial calcification. Thus, the Dyscalc locus, on proximal mouse Chromosome (Chr) 7, segregated with vascular calcification in a large cross between susceptible strain DBA/2J and resistant strain C57BL/6J. Further evidence was observed by analysis of recombinant inbred strains derived from various susceptible and resistant parental strains. Myocardial and vascular calcifications are importantly influenced by multiple modifier loci as well as the Dyscalc gene, making fine mapping of Dyscalc difficult. In order to allow more detailed genetic and biochemical characterization of Dyscalc, we have identified congenic strains containing the Dyscalc locus from resistant strain C57BL/10 on the background of susceptible strain C3H/DiSnA. The congenic strains exhibit little or no myocardial or vascular calcification, unlike the background HcB C3H strain, and the calcification segregated as a Mendelian factor, allowing finer mapping of Dyscalc.  相似文献   

8.
Our purposes were to develop a linkage map for rat Chromosome (Chr) 10, using chromosome-sorted DNA, and to construct congenic strains to localize blood pressure quantitative trait loci (QTL) on Chr 10 with the map. The linkage mapping panel consisted of three F2 populations totaling 418 rats. Thirty-two new and 29 known microsatellite markers were placed on the map, which spanned 88.9 centiMorgans (cM). The average distance between markers was 1.46 cM. No markers were separated by more than 6.8 cM. Four congenic strains were constructed by introgressing various segments of Chr 10 from the Milan normotensive strain (MNS) onto the background of the Dahl salt-sensitive (S) strain. A blood pressure QTL with a strong effect on blood pressure (35–42 mm Hg) when expressed on the S background was localized to a 31-cM region between D10Mco6 and D10Mcol. The region does not include the locus for inducible nitric oxide synthase (Nos2), which had been considered to be a candidate locus for the QTL. Received: 25 September 1996 / Accepted: 9 November 1996  相似文献   

9.
One of the genetic loci involved in tuberculosis (TB) infection control in mice is located within the chromosome 17 segment occupied by the H2 complex, the mouse MHC. Since this region spans approximately 40 Mb and contains hundreds of genes affecting immune response and host-parasite interactions, narrowing the interval by genetic recombination is necessary for identification of individual gene(s) involved. We have developed a panel of recombinant congenic mouse strains bearing different parts of the H2 complex from TB-susceptible I/St mice on the genetic background of TB-resistant C57BL/6 mice. By superposing the phenotype of severe or mild TB course against the chart of alleles inherited by these new strains from the two parental strains, a locus involved in TB control was mapped within the segment 33.305–34.479 Mb (∼1.1 Mb) of chromosome 17. Such a location indicates that allelic variants of an important proinflammatory factor TNF do not affect TB course in our experimental system. This result was confirmed by assessment of the TNF level in the lung tissue of infected mice of different strains. The QTL (quantitative trait locus) mapped in our study influences several important parameters of TB infection: mycobacterial multiplication in the lungs, severity of lung pathology, and regulation of early inflammatory response.  相似文献   

10.
 Type 1 diabetes is a multigenic autoimmune disease, the genetic basis for which is perhaps best characterized in the nonobese diabetic (NOD) mouse model. We previously located a NOD diabetes susceptibility locus, designated Idd11, on mouse Chromosome (Chr) 4 by analyzing diabetic backcross mice produced after crossing NOD/Lt with the nondiabetic resistant strain C57BL/6 (B6) strain. In order to confirm Idd11 and further refine its location, three NOD congenic mouse strains with different B6 derived intervals within Chr 4 were generated. Two of the congenic strains had a significant decrease in the cumulative incidence of diabetes compared with NOD/Lt control mice. The third NOD congenic strain, containing a B6 interval surrounding the Slc9a1 locus, was not protected against diabetes. These results define a new distal boundary for Idd11 and eliminate the Slc9a1 gene as a candidate. The Idd11 locus has now been definitively mapped to a 13cM interval on mouse Chr 4. Received: 15 May 1999 / Revised: 25 September 1999  相似文献   

11.
Congenic mouse strains are widely used in mapping traits to specific loci or short chromosomal regions. The precision of the mapping depends on the information available about the length of the differential segment—the segment introduced from the donor into the background strain. Until recently, very few markers flanking the differential locus were known and consequently the length of the foreign segment could only be determined imprecisely. Now, in an attempt to construct a map of the mouse chromosome 17, we have produced a set of DNA markers distributed along the chromosome. These markers provide a new opportunity to measure the length of the differential segment of the congenic strains and thus increase their usefulness for gene mapping. Here we examined the DNA of 96H-2 congenic strains using 30 DNA markers; of these, the most proximal is located roughly 1.5 centiMorgans (cM) from the centromere and the most distal is about 20 cM telomeric from theH-2 complex (the complex itself being some 20 cM from the centromere). The mapping depends on polymorphism among the input strains and can therefore establish only the minimal length of the differential segment. This point is emphasized by the fact that the average observed length of the differential segment is only about one half of the expected values. Offprint requests to: V. Vincek.  相似文献   

12.
We previously reported a quantitative trait locus for body weight, non-insulin-dependent diabetes 5 (Nidd5), on Chromosome 2 in the TSOD (Tsumura, Suzuki, Obese Diabetes) mouse, a model of polygenic obese type 2 diabetes. To find the gene responsible for a specific component of the pathogenesis, we used a marker-assisted selection protocol to produce congenic strains. These mice are designed to carry a control BALB/cA-derived genomic interval and a TSOD background to look for loss of phenotype. One of the strains with the widest congenic interval, D2Mit297-D2Mit304, showed reductions in both body weight and adiposity compared with TSOD mice. The phenotypic analyses of other congenic strains further narrowed the locus in a 9.4-Mb interval between D2Mit433 and D2Mit91, around which numerous loci for body weight and adiposity have been mapped previously. Although the locus showed a relatively modest effect on body weight, it had a major influence on fat mass that explains approximately 60% of the difference in the adipose index between parental TSOD and BALB/cA mice. Furthermore, the congenic strain with a minimal BALB/cA-derived region showed significantly smaller cell sizes of white and brown adipocytes compared with the control littermates. However, the locus did not primarily affect food consumption, general activity, or rectal temperature after cold exposure, although there are clear differences in these traits between the parental strains. The present work physically delineates the major locus for adiposity in the TSOD mouse.  相似文献   

13.
We have constructed the linkage map with precise genetic analysis of the Syrian hamster, Mesocricetus auratus, according to the restriction landmark genomic scanning (RLGS) spot mapping method. Although only 3.2–6.6% of the total RLGS spots between the two strains, ACN and BIO 14.6, showed genetic variance, 572 loci were found to be polymorphic. Out of 569 RLGS loci and 3 other loci, 531 were mapped with the backcross (ACN × BIO 14.6) F1× BIO 14.6. The cumulative map was 1111.6 cM, indicating that the spots/loci are located throughout the genome at 1.94 cM intervals on average. Thus, RLGS provides us with a rapid tool to construct the genetic map of any species, even if it has less genetic variation. Received: 15 July 1996 / Accepted: 25 September 1996  相似文献   

14.
We have generated a high-resolution genetic map, 0.071 cM per backcross animal, of the 13 cM T–H2 region of the mouse Chromosome (Chr) 17. The map contains two phenotypic loci, T and Hst1, 12 RFLP markers, and 24 microsatellite loci. The Hst1 gene was mapped to a chromosomal interval contained within a single 580-kb YAC clone. The FFEH11 YAC is 0.44 cM long and carries, besides the Hst1 gene, five polymorphic DNA markers and recombination breakpoints of six backcross animals. Two candidate genes for Hst1 were identified based on their location and testicular expression. These are Tbp and D17Ph4e. The sub-milliMorgan map of the T–H2 region revealed significant clustering of (CA)n loci. The clustering, if shown to be a common feature in the mouse genome, may cause gaps in the physical map of the mouse genome. Received: 11 September 1995 / Accepted: 9 October 1995  相似文献   

15.
Selective breeding to introduce a gene mutation from one mouse strain onto the genetic background of another strain invariably produces “hitchhiking” (i.e. flanking) genomic intervals, which may independently affect a disease trait of interest. To investigate a role for the polymeric Ig receptor in autoimmune diabetes, a congenic nonobese diabetic (NOD) mouse strain was generated that harbors a Pigr null allele derived from C57BL/6 (B6) mice. These pIgR-deficient NOD mice exhibited increased serum IgA along with an increased diabetes incidence. However, the Pigr null allele was encompassed by a relatively large “hitchhiking” genomic interval that was derived from B6 mice and overlaps Idd5.4, a susceptibility locus for autoimmune diabetes. Additional congenic NOD mouse strains, harboring smaller B6-derived intervals, confirmed Idd5.4 independently of the other three known susceptibility loci on chromosome 1, and further localized Idd5.4 to an interval proximal to Pigr. Moreover, these congenic NOD mice showed that B6 mice harbor a more diabetogenic allele than NOD mice for this locus. The smallest B6-derived interval encompassing the Pigr null allele may, however, confer a small degree of protection against diabetes, but this protection appears to be dependent on the absence of the diabetogenic B6 allele for Idd5.4. This study provides another example of the potential hidden effects of “hitchhiking" genomic intervals and how such intervals can be used to localize disease susceptibility loci.  相似文献   

16.
In the nonobese diabetes mouse, the murine type 1 diabetes susceptibility locus Idd20 interacts genetically with the diabetes resistance locus Idd19. Both Idds are located on distal mouse Chromosome 6, and previous studies on NOD.C3H congenic strains have shown that C3H alleles at Idd20 can suppress the disease-promoting effects of C3H alleles at Idd19 in both spontaneous and cyclophosphamide-induced diabetes. In this article we present the construction of novel congenic strains which, while maintaining the C3H alleles at Idd19, have allowed the candidate interval of Idd20 to be reduced from 4 to 1.8 cM. The analysis of these strains shows that Idd20 controls the progression of insulitis. Idd20 also increases the suppressive but not the pathogenic activity of splenocytes in diabetes transfer experiments. Our results suggest that the two Chromosome 6 susceptibility loci, Idd6 and Idd20, interact with the resistance locus Idd19 by regulating the activity of suppressor cells in the peripheral immune system.  相似文献   

17.
Previous quantitative trait loci (QTL) mapping studies document that the distal region of mouse Chromosome (Chr) 1 contains a gene(s) that is in large part responsible for the difference in seizure susceptibility between C57BL/6 (B6) (relatively seizure-resistant) and DBA/2 (D2) (relatively seizure-sensitive) mice. We now confirm this seizure-related QTL (Szs1) using reciprocal, interval-specific congenic strains and map it to a 6.6-Mb segment between Pbx1 and D1Mit150. Haplotype conservation between strains within this segment suggests that Szs1 may be localized more precisely to a 4.1-Mb critical interval between Fcgr3 and D1Mit150. We compared the coding region sequences of candidate genes between B6 and D2 mice using RT-PCR, amplification from genomic DNA, and database searching and discovered 12 brain-expressed genes with SNPs that predict a protein amino acid variation. Of these, the most compelling seizure susceptibility candidate is Kcnj10. A survey of the Kcnj10 SNP among other inbred mouse strains revealed a significant effect on seizure sensitivity such that most strains possessing a haplotype containing the B6 variant of Kcnj10 have higher seizure thresholds than those strains possessing the D2 variant. The unique role of inward-rectifying potassium ion channels in membrane physiology coupled with previous strong association between ion channel gene mutations and seizure phenotypes puts even greater focus on Kcnj10 in the present model. In summary, we confirmed a seizure-related QTL of large effect on mouse Chr 1 and mapped it to a finely delimited region. The critical interval contains several candidate genes, one of which, Kcnj10, exhibits a potentially important polymorphism with regard to fundamental aspects of seizure susceptibility.  相似文献   

18.
Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to early-stage chemically induced skin papillomas on chromosome 7 with a large number of [(FVB/N×MSM/Ms)×FVB/N] F1 backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 7. We used linkage analysis and congenic mouse strains to refine the location of Stmm1 (Skin tumor modifier of MSM 1) locus within a genetic interval of about 3 cM on proximal chromosome 7. In addition, we used patterns of allele-specific imbalances in tumors from F1 backcross and N10 congenic mice to narrow down further the region of Stmm1 locus to a physical distance of about 5.4 Mb. To gain the insight into the function of Stmm1 locus, we carried out a long term BrdU labelling experiments with congenic mice containing Stmm1 locus. Interestingly, we observed a decrease of BrdU-LRCs (Label Retaining Cells) in a congenic strain heterozygous or homozygous for MSM allele of Stmm1. These results suggest that Stmm1 responsible genes may have an influence on papillomagenesis in the two-stage skin carcinogenesis by regulating epidermal quiescent stem cells.  相似文献   

19.
Advanced intercross lines (AIL) and interval–specific congenic strains (ISCS) were used to fine map previously coarsely defined quantitative trait loci (QTL) on Chromosomes 1,10, and 19, influencing behaviors in the open Field (OF) and light–dark (LD) paradigms in mice. F12(A × B) AIL mice (N = 1130) were phenotyped, genotyped, and mapped. The ISCS were studied only in the telomeric Chromosome 10 region of interest, containing the exploratory and excitability QTL1 (Exq1). The Chromosome 10 Exq1 and Chromosome 19 Exq4 loci mapped robustly in the AIL. The most significant QTL findings (2.0 LOD score intervals; peak; LOD score) came from the TD15 and LD transitions traits, yielding estimated intervals of 2.2 cM for Exq1 (71.3–73.5 cM; peak 72.3 cM; LOD 11.9) and 9.0 cM for Exq4 (29.0–38.2 cM; peak 34 cM; LOD 4.2). The replicated QTLs on Chromosome 1 failed to map in this AIL population. The ISCS data confirmed Exq1 loci in general. However, the ISCS data were complex and less definitive for localizing the Exq1 loci. These exploratory and fear-like behaviors result from inheriting “many small things,” namely, QTL explaining 2%–7% of the phenotypic variance. These results highlight the challenges of positionally cloning loci of small effect for complex traits. In particular, fine-mapping success may depend on the genetic architecture underlying complex traits.Shumin Zhang, Yigong Lou and Howard Gershenfeld contributed equally to this work. Abbreviations: ROI, Region of Interest; RI, recombinant inbred; AIL, advanced intercross line; ISCS, Interval-specific congenic strains; Sqrt, square root; QTL, quantitative trait loci; OF, open field; LOD, likelihood of the odds ratio score; Tde1, traveled distance epoch 1; TDe3, traveled distance epoch 3; TD15, traveled distance during 15 min; VM15, vertical movements during 15 min ; LD, light–dark transitions; AvgCtrT, average center time; Chr, chromosome; Exq, exploratory and excitability QTL.  相似文献   

20.
Evidence obtained using recombinant inbred and congenic mouse strains has shown that thePC8 locus responsible for determining a marker on a singlek chain in inbred mice is linked to theLy-2,3 locus on chromosome 6. The upper limit of the map distance between these loci is approximately three centimorgans. This finding is discussed in relation to other known light-chain variants that are associated with theLy-2,3 locus.Abbreviations used in this paper are as follows L light chains - PC phosphocholine - H8 HOPC 8 - IEF isoelectric focusing - KLH keyhole limpet hemocyanin - RI recombinant inbred  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号