首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Abstract: A novel fluorescent Na+ indicator, Na+-binding benzofuran isophthalate (SBFI), was used to follow changes in the intracellular free Na+ concentration ([Na+]1) of synaptosomes. The dye, when loaded into synapto- somes in the form of its acetoxymethyl ester, was responsive to changes of [Na+]1. Calibration was made using the 340/380 nm excitation ratio when the cytoplasmic Na+ concentration was equilibrated with different concentrations of extracellular Na+ in the presence of 2 μ M gramicidin D. The basal value of [Na+]1 in synaptosomes in the presence of 140 m M extracellular Na+ was found to be 10.9 ± 1.8 m M. Veratridine, which opens potential-dependent Na+ channels, caused a sudden increase in [Na+]1 in a concentration-dependent manner (1 -20 μ M ), whereas the effect of ouabain (20 and 50 μ M ), the inhibitor of the plasma membrane Na+,K+-ATPase, was more gradual. The rise in the fluorescence intensity upon addition of veratridine was prevented completely by 2 μ M tetrodotoxin. α-Latrotoxin, the black widow spider toxin, caused an increase in the fluorescence intensity, which became evident 1 min after the addition of the toxin. The rate of increase was proportional to the concentration of the toxin (0.19–1.5 n M ). This report confirms our earlier finding demonstrating a Na+-dependent component in the action of α-Iatrotoxin, and shows that changes in [Na+]1 in synaptosomes can be followed by SBFI.  相似文献   

2.
Abstract: The role of Na+ channels and membrane potential in stimulus secretion coupling in adrenal medulla cell cultures was investigated. Veratridine, aconitine, batrachotoxin (BTX), and scorpion venom, which increase the flux of ions through tetrodotoxin(TTX)-sensitive Na+ channels, all evoke secretion of catecholamines that is blocked by TTX. TTX partially inhibits secretion induced by low concentrations of nicotine in Locke's solution but has no effect on high concentrations of nicotine (20 μM). In Ca2+-sucrose media TTX has no effect on secretion at either high or low concentrations of nicotine. Replacement of Na+ with Li+ in Locke's solution reduces the response to nicotine and to veratridine. Complete replacement of Na+ with hydrazine, diethanolamine, TRIS, and choline completely inhibits the response to nicotine and almost completely inhibits the response to veratridine. Following exposure of cells to 50 mM-100 mM-K+, nicotine does not stimulate catecholamine secretion unless the cells are resuspended in media containing less than 50 mM-K+. Neither dibutyryl-cyclic AMP nor dibutyryl-cyclic GMP evokes secretion. α-Bungarotoxin (1 μM) did not inhibit nicotine-induced secretion. These studies indicate that Na+ channels and acetylcholine (ACh) receptor ion channels are independently coupled to the influx of Ca2+. The membrane potential appears to affect nicotine- and veratridine-evoked secretion.  相似文献   

3.
Abstract: The Na+ sensitivity of whole brain membrane Na+,K+-ATPase isoenzymes was studied using the differential inhibitory effect of ouabain (α1, low affinity for ouabain; α2, high affinity; and α3, very high affinity). At 100 m M Na+, we found that the proportion of isoforms with low, high, and very high ouabain affinity was 21, 38, and 41%, respectively. Using two ouabain concentrations (10−5 and 10−7 M ), we were able to discriminate Na+ sensitivity of Na+, K+-ATPase isoenzymes using nonlinear regression. The ouabain low-affinity isoform, α1, exhibited high Na+ sensitivity [ K a of 3.88 ± 0.25 m M Na+ and a Hill coefficient ( n ) of 1.98 ± 0.13]; the ouabain high-affinity isoform, α2, had two Na+ sensitivities, a high ( K a of 4.98 ± 0.2 m M Na+ and n of 1.34 ± 0.10) and a low ( K a of 28 ± 0.5 m M Na+ and an n of 1.92 ± 0.18) Na+ sensitivity activated above a thresh old (22 ± 0.3 m M Na+); and the ouabain very-high-affinity isoform, α3, was resolved by two processes and appears to have two Na+ sensitivities (apparent K a values of 3.5 and 20 m M Na+). We show that Na+ dependence in the absence of ouabain is the result of at least of five Na+ reactivities. This molecular functional characteristic of isoenzymes in membranes could explain the diversity of physiological roles attributed to isoenzymes.  相似文献   

4.
Abstract: The voltage-dependent Na+ ionophore of various neuronal cells is permeable not only to Na+ ions but also to guanidinium ions. Therefore, the veratridine-(or aconitine-) stimulated influx of [14C]guanidinium in neuroblastoma × glioma hybrid cells was measured to characterize the Na+ ionophore of these cells. Half-maximal stimulation of guanidinium uptake was seen at 30 μ M veratridine. At 1 m M guanidinium, the veratridine-stimulated uptake of guanidinium was lowered to 50% by approximately 60 m M Li+, Na+, or K+ and by a few millimolar Mn2+, Co2+, or Ni2+. The basal, as well as the veratridine-stimulated, uptake of guanidinium was inhibited by the cholinergic antagonists (+)-tubocurarine ( Ki = 50 to 500 n M ) and atropine ( Ki = 5 to 30 μ M ) and the adrenergic antagonists phentolamine ( Ki = 5 μ M ) and propranolol ( Ki = 60 μ M ). The specificity of the inhibitory effects of these agents is stressed by the ineffectiveness of various other neurotransmitter antagonists. However, the corresponding ionophore in neuroblastoma cells (clone N1E-115) seems to be regulated differently. While phentolamine and propranolol inhibit the veratridine-activated uptake as in the hybrid cells, (+)-tubocurarine and atropine exert only a slight effect.  相似文献   

5.
Abstract— The relationship between sodium ion (Na+) influx and vol. flow of fluid into the cerebral ventricles was measured during ventriculocisternal perfusion with sucrose solutions of various concentrations. The vol. flow of fluid into the ventricles of cats varied linearly from 0 to 90 μl/min with sucrose solutions of 6 to 780 mOsm/l. In the vol. flow range of 0 to 35 μl/min, Na+ influx was essentially constant independent of vol. flow rate with a mean value of 6.95 μEq/min. In the vol. flow range of 25 to 90 μl/min, Na+ influx increased linearly with flow rate. Under all conditions, Na+ influx was greater than that corresponding to newly formed fluid with a normal spinal fluid Na+ concentration. The virtual Na+ concentration of nascent fluid was effectively infinite when vol. flow was zero and had an asymptotic minimum value of 109 mEq/l as vol. flow increased above normal. These results demonstrate that Na+ influx into the ventricles may occur by diffusion from the surrounding brain and also with vol. flow of nascent fluid.  相似文献   

6.
Post-myocardial infarction (MI) remodeling of cardiac myocytes and the myocardial interstitium results in alteration of gross ventricular geometry and ventricular dysfunction. To investigate the mechanisms of the remodeling process of the heart after large MI, the expression of various genes in viable left ventricle and infarct scar tissue were examined at 16 weeks post-MI. Steady-state expression of Na+-K+ATPase α-1 and −2, phospholamban (PLB), α-myosin heavy chain (α-MHC), ryanodine receptor (Rya) and Ca2+ ATPase (Serca2) mRNAs were decreased in the infarct scar vs noninfarcted sham-operated controls (P < 0.05). On the other hand, Giα2 and β-MHC mRNAs were upregulated (P < 0.05, respectively) in the infarct scar whereas Na+-K+ ATPase-β, Na+-Ca2+ exchanger and Gs mRNAs were not altered vs control values. In viable left ventricle, the a-1 subunit of Na+-K+ATPase, α-3, β-isoforms, Rya, β-MHC, Giα2, Gs and Na+-Ca2+ exchanger were significantly elevated while expression of the a-2 subunit of Na+-K+ ATPase, PLB and Serca2 were significantly decreased compared to controls. Expression of CK2α mRNA was elevated in noninfarcted heart (145 ± 15%) and diminished in the infarct scar (66 ± 13%) vs controls. Expression of β-MHC mRNA was elevated in both viable and infarct scar tissues of experimental hearts (140 ± 31% and 183 ± 30% vs. controls, respectively). These results suggest that cardiac genes in the infarcted tissue and viable left ventricle following MI are differentially regulated.  相似文献   

7.
Abstract: Lithium has been used clinically in the treatment of manic depression. However, its pharmacologic mode of action remains unclear. Characteristics of Li+ interactions in red blood cells (RBCs) have been identified. We investigated Li+ interactions on human neuroblastoma SH-SY5Y cells by developing a novel 7Li NMR method that provided a clear estimation of the intra- and extracellular amounts of Li+ in the presence of the shift reagent thulium-1,4,7,10-tetrazacyclododecane- N,N ', N ", N ‴-tetramethylene phosphonate (HTmDOTP4−). The first-order rate constants of Li+ influx and efflux for perfused, agarose-embedded SH-SY5Y cells in the presence of 3 m M HTmDOTP4− were 0.055 ± 0.006 (n = 4) and −0.025 ± 0.006 min−1 (n = 3), respectively. Significant increases in the rate constants of Li+ influx and efflux in the presence of 0.05 m M veratridine indicated the presence of Na+ channel-mediated Li+ transport in SH-SY5Y cells. 7Li NMR relaxation measurements showed that Li+ is immobilized more in human neuroblastoma SH-SY5Y cells than in human RBCs.  相似文献   

8.
Abstract: Recent studies have demonstrated that D1-selective and D2-selective dopamine receptor agonists inhibit catecholamine secretion and Ca2+ uptake into bovine adrenal chromaffin cells by receptor subtypes that we have identified by PCR as D5, a member of the D1-like dopamine receptor subfamily, and D4, a member of the D2-like dopamine receptor subfamily. The purpose of this study was to determine whether activation of D5 or D4 receptors inhibits influx of Na+, which could explain inhibition of secretion and Ca2+ uptake by dopamine agonists. D1-selective agonists preferentially inhibited both dimethylphenylpiperazinium- (DMPP) and veratridine-stimulated 22Na+ influx into chromaffin cells. The D1-selective agonists chloro-APB hydrobromide (CI-APB; 100 µ M ) and SKF-38393 (100 µ M ) inhibited DMPP-stimulated Na+ uptake by 87.5 ± 2.3 and 59.7 ± 4.5%, respectively, whereas the D2-selective agonist bromocriptine (100 µ M ) inhibited Na+ uptake by only 22.9 ± 5.0%. Veratridine-stimulated Na+ uptake was inhibited 95.1 ± 3.2 and 25.7 ± 4.7% by 100 µ M CI-APB or bromocriptine, respectively. The effect of CI-APB was concentration dependent. A similar IC50 (∼18 µ M ) for inhibition of both DMPP- and veratridine-stimulated Na+ uptake was obtained. The addition of 8-bromo-cyclic AMP (1 m M ) had no effect on either DMPP- or veratridine-stimulated Na+ uptake. These observations suggest that D1-selective agonists are inhibiting secretagogue-stimulated Na+ uptake in a cyclic AMP-independent manner.  相似文献   

9.
Abstract: In this study we demonstrate that 50 mRS K+ stimulates the conversion of L-[3H] arginine to L-[3H] citrulline and that this effect is blocked by 10 μ M AT-nitro- l -arginine, a nitric oxide synthase inhibitor, and Ca2+-free conditions. Amiloride (1 m M ) and low Na+ conditions were used to test the possible involvement of the Na+-Ca2+ exchanger. These treatments were without effect. The calcium channel blockers 10 mRS Mg2+, 100 μ M Cd2+, and 10 mRS Co2+ also blocked the K+ response, suggesting the involvement of voltage-dependent calcium channels (VDCCs). The specific VDCC involved seems to be the P type, as funnel-web spider toxin blocked the response whereas 200 μ M Ni2+, 10 μ M nifedipine, and 100 n M ω-conotoxin did not.  相似文献   

10.
Abstract: The release of cholecystokinin-like immunoreactivity (CCK-LI) from the frontal cortex of freely moving rats has been studied using a transcerebral microdialysis technique coupled to a radioimmunoassay procedure. Basal levels of CCK-LI in the dialysate were above detection limits (2.4 ± 0.7 pg/20 min; n = 8). High-K+ media evoked CCK-LI overflow in a concentration-dependent manner. The threshold concentration was 50 mM KCI. The peak overflow evoked by 100 mM K+ amounted to 42.7 ± 2.8 pg/20 min (n = 6); it was totally Ca2+ dependent but insensitive to 1 μM tetrodotoxin. Infusion of 4-aminopyridine (1 mM ; 20 min) evoked an overflow of CCK-LI (32 ± 2.3 pg/ 20 min; n = 4), wnich was totally Ca2+ dependent and tetrodotoxin sensitive. Depolarization with 100 μg/ml of veratrine (20 min) provoked a CCK-LI overflow (62.2 ± 10 pg/20 min; n = 6), which was also blocked by tetrodotoxin or by the absence of Ca2+ ions. The CCK-LI material collected under basal conditions or during veratrine infusion consisted essentially of CCK octapeptide sulfate. The veratrine-induced CCK-LI overflow did not change significantly when the infusion time was prolonged to 100 min. A second 20-min stimulus with 100 μg/ml of veratrine applied 200 min after a first 20-min stimulus evoked a barely significant CCK-LI overflow. These data suggest that one single 20-min stimulus with 100 μg/ml of veratrine may be sufficient to deplete the CCK-LI releasable stores and that >200 min are required to replenish the depleted CCK-containing vesicles. Taken together the data allow us to conclude that the physiology and the pharmacology of CCK release can be adequately studied in vivo by brain microdialysis.  相似文献   

11.
Abstract: Rat brain microsomes were preincubated with S -adenosylmethionine (SAM), MgCl2, and CaCl2, then re-isolated, and the activity of Na+,K+-ATPase determined. SAM inhibited the Na+,K+-ATPase activity compared with microsomes subjected to similar treatment in the absence of SAM. A biphasic inhibitory effect was observed with a 50% decrease at a SAM concentration range of 0.4 μ M -3.2 μ M and a 70% reduction at a concentration range above 100 μ M . Inclusion of either S- adenosylhomocysteine or 3-deazaadenosine in the preincubations prevented the SAM inhibition of Na+,K+-ATPase activity. The inhibition by SAM appeared to be Mg2+- or Ca2+-dependent.  相似文献   

12.
Abstract: The cellular mechanisms underlying opioid action remain to be fully determined, although there is now growing indirect evidence that some opioid receptors may be coupled to phospholipase C. Using SH-SY5Y human neuroblastoma cells (expressing both μ-and δ-opioid receptors), we demonstrated that fentanyl, a μ-preferring opioid, caused a dose-dependent (EC50= 16 n M ) monophasic increase in inositol (1,4,5)trisphosphate mass formation that peaked at 15 s and returned to basal within 1–2 min. This response was of similar magnitude (25.4 ± 0.8 pmol/mg of protein for 0.1 μ M fentanyl) to that found in the plateau phase (5 min) following stimulation with 1 m M carbachol (18.3 ± 1.4 pmol/mg of protein), and was naloxone-, but not naltrindole-(a δ antagonist), reversible. Further studies using [ d -Ala2, MePhe4, Gly(ol)5]enkephalin and [ d -Pen2,5]enkephalin confirmed that the response was specific for the μ receptor. Incubation with Ni2+ (2.5 m M ) or in Ca2+-free buffer abolished the response, as did pretreatment (100 ng/ml for 24 h) with pertussis toxin (control plus 0.1 μ M fentanyl, 26.9 ± 1.5 pmol/mg of protein; pertussis-treated plus 0.1 μ M fentanyl, 5.1 ± 1.3 pmol/mg of protein). In summary, we have demonstrated a μ-opioid receptor-mediated activation of phospholipase C, via a pertussis toxin-sensitive G protein, that is Ca2+-dependent. This stimulatory effect of opioids on phospholipase C, and the potential inositol (1,4,5)trisphosphate-mediated rises in intracellular Ca2+, could play a part in the cellular mechanisms of opioid action.  相似文献   

13.
Abstract: N -Acetylaspartate (NAA) is characterized by a high tissue-to-extracellular concentration ratio under normal conditions and is released from neurons during hyposmotic cell swelling. As cell volume regulation and acid-base homeostasis share common processes, we have examined by microdialysis whether the extracellular concentration of NAA is altered by various acidotic challenges. Twenty-minute perfusion of 50 m M NH4+ through the microdialysis probe progressively lowered dialysate pH by 0.18, followed by a sudden, additional reduction after NH4+ removal. The latter effect indicated extrusion of cellular H+ because it was suppressed by blockade of Na+/H+ exchange with 5-( N,N -dimethyl)amiloride (1 or 5 m M in perfusion medium). NH4+ increased dialysate levels of NAA and lactate by approximately two- and threefold their initial values, respectively. These data demonstrate that pronounced intracellular acidosis is associated with NAA efflux, presumably from neurons. Whether this effect is linked directly to acid-base homeostasis or is secondary to acidosis-induced cell swelling remains to be clarified. Hypercapnia and perfusion of acid medium failed to increase dialysate NAA, probably because acidosis was not severe enough or the associated cellular swelling was not followed by regulatory volume decrease. As cellular swelling and acidosis are key features of cerebral ischaemia, further investigations into the role of NAA, and the development of sophisticated magnetic resonance spectroscopic methods capable of resolving intra-/extracellular NAA redistribution, would be especially relevant to clinical practice.  相似文献   

14.
Abstract: Na+ flux was studied in cultured neuroblastoma cells grown in medium containing increased glucose or L - fucose concentrations. Chronic exposure of neuroblastoma cells to 30 m M glucose or 30 m M L-fucose caused a decrease in ouabain-sensitive and veratridine-stimulated 22Na+ uptake compared with cells cultured in unsupplemented medium. The Na+ current, determined by using whole-cell configuration of the patch clamp, was also decreased in these cells. Tetrodotoxin (3 μ M ), which blocked whole cell Na+ currents, also blocked veratridine-stimulated 22Na+ accumulation. Culturing cells in medium containing 30 m M fructose as an osmotic control had no effect on Na+ flux. Specific [3H] saxitoxin binding was not affected by 30 m M glucose or 30 m M L-fucose compared with cells grown in unsupplemented medium, suggesting that the number of Na+ channels was not decreased. These studies suggest that exposing cultured neuronal cells to conditions that occur in the diabetic milieu alters Na+ transport and Na+-channel activity.  相似文献   

15.
Abstract— (1) Thin slices were prepared from guinea pig cerebral cortex and allowed to incubate in oxygenated bicarbonate-buffered medium for 30 min. Subsequent to that time the slices were made hypoxic by passing 95% N2-5% CO2 through the medium. Hypoxic exposure caused the slices to gain Na+ and to lose K+ ions from the non-inulin space. These shifts were especially pronounced when slices were electrically stimulated during the hypoxic period. Thus, after 30 min of hypoxia plus stimulation, non-inulin Na+ had risen from 30 to 84, μequiv./g wet wt., and non-inulin K+ had fallen from 50·5 to 14·3 μequiv./g wet wt.
(2) The above shifts were in part reversible, but when reoxygenated slices were subsequently electrically stimulated in oxygenated media, they failed to lose K+ or to gain Na+.
(3) The induced inexcitable state could not be attributed to inability of the slices to replenish ATP and phosphocreatine and may indicate an alteration in membrane constituents necessary for preservation of membrane excitability.  相似文献   

16.
Abstract: Uptake and release of cysteine sulfinic acid by synaptosomal fractions (P2) and slices of rat cerebral cortex were investigated. The P2 fraction had a Na+-dependent high-affinity uptake system for cysteine sulfinic acid (Km, 12μM), which was restricted to the synaptosomes. High-affinity uptake of cysteine sulfinic acid was competitively inhibited by glutamate, aspartate, and cysteic acid. None of the various centrally acting drugs tested specifically inhibited this transport system. Release of [14C]cysteine sulfinic acid from preloaded cortical slices or P2 fractions was examined by a superfusion method, which avoided reuptake of released [14C]cysteine sulfinic acid. High K+ (56 m M ) and veratridine (10μM) stimulated the release of cysteine sulfinic acid from slices and the P2 fraction in a partly Ca2+-dependent manner. Diazepam at concentrations of 10 and 100 μM markedly inhibited the stimulated release, but not the spontaneous release, by cortical slices. On the contrary, it had no effect on the stimulated release of cysteine sulfinic acid from the P2 fraction.  相似文献   

17.
Photosynthetic CO2-fixation, chlorophyll content, growth rate and nitrate reductase activity were used to examine the influence of NH+4-N and NO3-N on Sphagnum magellanicum cultivated under defined conditions in phytotrons. NO3-concentrations up to 322 μ M were found to be favourable. Increased NH+4 concentrations, however, resulted in growth inhibition and decreased chlorophyll content at concentrations ≧ 255 μ M ; e.g. 600 μ M NH+4 caused a 20% reduction of nitrate reductase activity and net photosynthesis. For raised bog Sphagna an improved standard nutrient solution is proposed with the following ion concentrations (μ M ): 55 Na+; 17 K+; 95 NH+4; 22 Ca2+; 22 Mg2+; 2 Fe3+; 20 Cl; 100 NO3; 57 SO2-4; 7.4 H2PO4; trace elements: A-Z solution (Hoagland) 50 μl 1000 ml−1; pH 5.8.  相似文献   

18.
N-System Amino Acid Transport at the Blood-CSF Barrier   总被引:1,自引:1,他引:0  
Abstract: Despite l -glutamine being the most abundant amino acid in CSF, the mechanisms of its transport at the choroid plexus have not been fully elucidated. This study examines the role of L-, A-, ASC-, and N-system amino acid transporters in l -[14C]glutamine uptake into isolated rat choroid plexus. In the absence of competing amino acids, approximately half the glutamine uptake was via a Na+-dependent mechanism. The Na+-independent uptake was inhibited by 2-amino-2-norbornane carboxylic acid, indicating that it is probably via an L-system transporter. Na+-dependent uptake was inhibited neither by the A-system substrate α-(methylamino)isobutyric acid nor by the ASC-system substrate cysteine. It was inhibited by histidine, asparagine, and l -glutamate γ-hydroxamate, three N-system substrates. Replacement of Na+ with Li+ had little effect on uptake, another feature of N-system amino acid transport. These data therefore indicate that N-system amino acid transport is present at the choroid plexus. The V max and K max for glutamine transport by this system were 8.1 ± 0.3 nmol/mg/min and 3.3 ± 0.4 m M , respectively. This system may play an important role in the control of CSF glutamine, particularly when the CSF glutamine level is elevated as in hepatic encephalopathy.  相似文献   

19.
Abstract Transport of Mn2+ was repressed in Candida utilis cells grown in continuous culture in high-Mn2+ (100 μM Mn2+) medium as compared to cells grown in basic (0.45 μM Mn2+) and low-Mn2+ (< 0.05 μM Mn2+) media. In contrast, no repression of Cu2+ uptake occurred in high-Cu2+-grown (25 μM Cu2+) cells as compared to cells grown in basic medium (0.54 μM Cu2+). Cu2+-limited cells did not hyperaccumulate Cu2+ and there was not significant difference in initial uptake rates for all 3 Cu2+ conditions. Mn2+ uptake appears to be regulated by a mechanism sensitive to the external Mn2+ concentration, whereas Cu2+ transport is not governed in this way by the external Cu2+.  相似文献   

20.
ABSTRACT. Male crickets ( Teleogryllus oceanicus ) when dehydrated for 3 days lost 51% of their body water, and 65% of their haemolymph volume. Haemolymph osmolality rose from 391 to 572mOs/kg; [Na+] from 149 to 289 HIM; and [K+] from 13.0 to 26.3 mM. During dehydration 385 μig Na (expressed as NaCl) and 41 μug K (expressed as KCI) were removed from the haemolymph. Rehydration of the dehydrated insects failed to restore the Na+ and K+ concentrations to near their original levels. Approximately 62% of the missing Na+ was excreted, whilst five times the amount of K+ removed from the haemolymph was excreted. It is presumed that the excess represents K+ removed from intracellular fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号