首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Programmed cell death occurs after ischemic, excitotoxic, and traumatic brain injury (TBI). Recently, a caspase-independent pathway involving intranuclear translocation of mitochondrial apoptosis-inducing factor (AIF) has been reported in vitro; but whether this occurs after acute brain injury was unknown. To address this question adult rats were sacrificed at various times after TBI. Western blot analysis on subcellular protein fractions demonstrated intranuclear localization of AIF in ipsilateral cortex and hippocampus at 2-72 h. Immunocytochemical analysis showed AIF labeling in neuronal nuclei with DNA fragmentation in the ipsilateral cortex and hippocampus. Immunoelectronmicroscopy verified intranuclear localization of AIF in hippocampal neurons after TBI, primarily in regions of euchromatin. Large-scale DNA fragmentation ( approximately 50 kbp), a signature event in AIF-mediated cell death, was detected in ipsilateral cortex and hippocampi by 6 h. Neuron-enriched cultures exposed to peroxynitrite also demonstrated intranuclear AIF and large-scale DNA fragmentation concurrent with impaired mitochondrial respiration and cell death, events that are inhibited by treatment with a peroxynitrite decomposition catalyst. Intranuclear localization of AIF and large-scale DNA fragmentation occurs after TBI and in neurons under conditions of oxidative/nitrosative stress, providing the first evidence of this alternative mechanism by which programmed cell death may proceed in neurons after brain injury.  相似文献   

2.
DNA fragmentation, mRNA and protein levels of Bcl-XL, Bax and caspase-3 were determined to characterize interrelations between expression of these apoptotic markers in the neonatal brain regions. High DNA fragmentation intensity in the cortex was in consonance with the lowest Bcl-XL/Bax expression ratio, the highest procaspase-3 and active caspase-3 levels. Low and intermediate DNA fragmentation levels in the cerebellum and hippocampus respectively were also in a good agreement with apoptotic proteins expression in these structures. In the cortex, hippocampus and cerebellum DNA fragmentation intensity was proportional to the active caspase-3 level. In contrast to these structures, in the brainstem, the lowest level of this protease was accompanied by the highest intensity of DNA fragmentation among the brain regions studied. The data suggest that cell death normally occurring during early postnatal life could be realized in the developing brainstem via caspase-3-independent pathways in animals that express this protease.  相似文献   

3.
DNA fragmentation has been studied in different regions of the newborn piglet brain following different times of normobaric hypoxia (5% O(2), 95% N(2)). After 1 hr of hypoxia, fragmented DNA was observed in cerebellum, cortex, hippocampus, and striatum but not in hypothalamus. More fragmentation occurred in these areas of the brain when the animals were kept under hypoxia for times up to 8 hr 45 min. When the animals were submitted to hypoxia for two and a half hours, integrity of DNA was recovered respectively after 3 hr of exposure to the ambient atmosphere in hippocampus and striatum, but 4 hr of recovery were necessary for cerebellum and cortex. These results are discussed in terms of the consequences of neonatal hypoxia and apnea for newborn infants and economical impact for farm animals.  相似文献   

4.
Poly(ADP-ribose) polymerase (PARP) is a conserved enzyme involved in the regulation of DNA repair and genome stability. The role of PARP during aging is not well known. In this study PARP activity was investigated in nuclear fractions from hippocampus, cerebellum, and cerebral cortex of adult (4 months), old adult (14 months) and aged (24-27 months) rats. Concomitantly, the free radical evoked lipid peroxidation was estimated as thiobarbituric acid reactive substances (TBARS). The specific activity of PARP in adult brain was about 25, 21 and 16 pmol/mg protein per min in hippocampus, cerebellum and cerebral cortex, respectively. The enzyme activity was higher in all investigated parts of the brain of old adults. In aged animals PARP activity was lower in hippocampus by about 50%, and was unchanged in cerebral cortex and in cerebellum comparing to adult rats. The concentration of TBARS was the same in all parts of the brain and remained unchanged during aging. There is no direct correlation between PARP activity and free radical evoked lipid peroxidation during brain aging. The lowered enzyme activity in aged hippocampus may decrease DNA repair capacity which subsequently may be responsible for the higher vulnerability of hippocampal neurons to different toxic insults.  相似文献   

5.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

6.
7.
Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30), a DNA-bound enzyme, plays a key role in genome stability, but after overactivation can also be responsible for cell death. The aim of the present study was to investigate PARP-1 activity in the hippocampus, brain cortex, striatum and cerebellum in adult (4 months) and aged (24 months) specific pathogen free Wistar rats and to correlate it with PARP-1 protein level and p53 expression. Moreover, the response of PARP-1 in adult and aged hippocampus to oxidative/genotoxic stress was evaluated. Our data indicated a statistically significant enhancement of PARP-1 activity in aged hippocampus and cerebral cortex comparing to adults without statistically significant changes in PARP-1 protein level. The expression of p53 mRNA was elevated in all aged brain parts with the exception of the cerebral cortex. Our data suggest that enhancement of PARP-1 activity and p53 expression in aged brain may indicate higher DNA damage. Our data also indicate that during excessive oxidative/genotoxic stress there is no response of PARP-1 activity in aged hippocampus in contrast to a significant enhancement of PARP-1 activity in adults which may have important consequences for the physiology and pathology of the brain.  相似文献   

8.
We have previously demonstrated an increase in adult brain DNA content in rats adrenalectomized on postnatal day 11. The present studies examined cell proliferation in cerebral cortex, cerebellum, hippocampus, and midbrain-diencephalon following adrenalectomy at this age. Compared to sham-operated controls, adrenalectomized animals showed increased [3H]thymidine incorporation into DNA (measured at 1 h following a pulse injection) in all brain regions at 7 and 14 days postsurgery. In some areas, the effect was already present as early as 2 days following adrenalectomy. Chronic replacement with corticosterone prevented this increase in DNA labelling in a dose-dependent manner. When cell proliferation in the cerebral cortex and cerebellum was independently assessed by measuring changes in thymidine kinase activity, enzyme activity was significantly elevated in both areas at 7 and 14 days postsurgery. Finally, histological examination of the cerebellar cortex suggested a delayed disappearance of the external granular layer in several cerebellar lobules of adrenalectomized animals. Overall, these findings indicate that day-11 adrenalectomy leads to a prolonged stimulation of mitotic activity in areas where cell formation at this time is exclusively glial (i.e., cerebral cortex and mid-brain-diencephalon) as well as in areas where postnatal neurogenesis is also occurring (cerebellum and hippocampus). It is hypothesized that this stimulation results from the removal of a tonic inhibitory effect exerted by circulating glucocorticoids in the normal intact animal.  相似文献   

9.
Postnatal developmental patterns of uridine kinase were determined in crude subcellular fractions of the rat cerebellum, hypothalamus and cerebral cortex at ages 3 through 60 days. The highest specific activity and predominant distribution of enzyme was in the 105,000g supernatant of the 3 brain regions. Enzyme activity in hypothalamus and cerebral cortex was maximum at 3 days and decreased with age; in cerebellum it increased through 13 days and decreased thereafter. Thus, the pattern of activity in hypothalamus and cerebral cortex paralleled changes in DNA and RNA synthesis through age 60 days; in cerebellum, it more closely approximated changes in DNA synthesis during early development. Changes inK m with aging suggest that the brain regions contain more than one form of enzyme. The highest particulate activity was in the microsomal fraction of the cerebellum and hypothalamus at all ages and in the cortex at 35 and 60 days. Relative specific activity for microsomal fractions of the brain regions at 60 days indicate a concentration of the enzyme which may be relevant in the maintenance of RNA activity in adult brain.  相似文献   

10.
In this study, the effect of aging on nitric oxide synthases (NOS) was investigated in homogenates and cytosolic fractions from hippocampus, brain cortex and cerebellum of adult, old adult and old Wistar rats (3-4, 14, and 24 months old, respectively). Our results indicate the enhancement of Ca(2+) and calmoduline-dependent NOS activity in all investigated aged brain parts. Significantly higher NOS activity was found in the cerebellum.In the absence of Ca(2+) or in the presence of N-nitro-L-arginine (NNLA) the activity of NOS was absent. Inhibitor of constitutive NOS isoforms which preferentially inhibits neuronal NOS (nNOS), 7-nitroindazole, decreased NOS activity by 60 and 75% in adult and aged brain, respectively. However, using RT-PCR a significantly lower amount of mRNA for nNOS was detected in hippocampus. The ratio of NOS activity to nNOS mRNA was significantly higher in hippocampus and cerebellum of aged brain. No expression of the gene for inducible NOS was observed in adult and aged brain.These results indicate that probably nNOS is responsible for higher NOS activity in aged brain. Our data suggest that alteration of nNOS phosphorylation state may be responsible for the activation of NOS in aged brain. The down-regulation of nNOS mRNA expression may be an adaptive mechanism that protects the brain against excessive NO release.  相似文献   

11.
Antioxidant responses to chronic hypoxia in the rat cerebellum and pons   总被引:6,自引:0,他引:6  
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH) and sleep fragmentation and deprivation. Exposure to CIH results in oxidative stress in the cortex, hippocampus and basal forebrain of rats and mice. We show that sustained and intermittent hypoxia induces antioxidant responses, an indicator of oxidative stress, in the rat cerebellum and pons. Increased glutathione reductase (GR) activity and thiobarbituric acid reactive substance (TBARS) levels were observed in the pons and cerebellum of rats exposed to CIH or chronic sustained hypoxia (CSH) compared with room air (RA) controls. Exposure to CIH or CSH increased GR activity in the pons, while exposure to CSH increased the level of TBARS in the cerebellum. The level of TBARS was increased to a greater extent after exposure to CSH than to CIH in the cerebellum and pons. Increased superoxide dismutase activity (SOD) and decreased total glutathione (GSHt) levels were observed after exposure to CIH compared with CSH only in the pons. We have previously shown that prolonged sleep deprivation decreased SOD activity in the rat hippocampus and brainstem, without affecting the cerebellum, cortex or hypothalamus. We therefore conclude that sleep deprivation and hypoxia differentially affect antioxidant responses in different brain regions.  相似文献   

12.
Congenital muscular dystrophies present mutated gene in the LARGE mice model and it is characterized by an abnormal glycosylation of α-dystroglycan (α-DG), strongly implicated as having a causative role in the development of central nervous system abnormalities such as cognitive impairment seen in patients. However, the pathophysiology of the brain involvement remains unclear. Therefore, the objective of this study is to evaluate the oxidative damage and energetic metabolism in the brain tissue as well as cognitive involvement in the LARGE(myd) mice model of muscular dystrophy. With this aim, we used adult homozygous, heterozygous, and wild-type mice that were divided into two groups: behavior and biochemical analyses. In summary, it was observed that homozygous mice presented impairment to the habituation and avoidance memory tasks; low levels of brain-derived neurotrophic factor (BDNF) in the prefrontal cortex, hippocampus, cortex and cerebellum; increased lipid peroxidation in the prefrontal cortex, hippocampus, striatum, and cerebellum; an increase of protein peroxidation in the prefrontal cortex, hippocampus, striatum, cerebellum, and cortex; a decrease of complex I activity in the prefrontal cortex and cerebellum; a decrease of complex II activity in the prefrontal cortex and cerebellum; a decrease of complex IV activity in the prefrontal cortex and cerebellum; an increase in the cortex; and an increase of creatine kinase activity in the striatum and cerebellum. This study shows the first evidence that abnormal glycosylation of α-DG may be affecting BDNF levels, oxidative particles, and energetic metabolism thus contributing to the memory storage and restoring process.  相似文献   

13.
DNA damage has been postulated as a mechanism of neuronal death in Parkinson's disease (PD). In the present study, genomic DNA was isolated from eight brain regions (frontal, temporal, and occipital cortex, hippocampus, caudate/putamen, thalamus, cerebellum, and midbrain) from five neuropathologically confirmed cases of Parkinson's disease and six control brains and analyzed for the presence of single and double strand breaks, melting temperature, EtBr intercalation, DNAse digestion pattern, and DNA conformations. The results showed that DNA from midbrain in PD accumulated significantly higher number of strand breaks than age-matched controls. Caudate nucleus/putamen, thalamus, and hippocampus also showed more DNA fragmentation compared to control brains. Circular dichroism studies showed that DNA conformation was altered with imprecise base stacking in midbrain, caudate nucleus/putamen, thalamus, and hippocampus in PD. However, DNA from frontal, temporal, and occipital cortex, and cerebellum was not affected significantly in PD group as compared to controls. This study provides a comprehensive database on stability, damage, and conformations of DNA in different regions in brains of PD patients.  相似文献   

14.
Synthesis and regulation of lipoprotein lipase in the hippocampus   总被引:1,自引:0,他引:1  
Lipoprotein lipase (LPL) expression was determined in adult rat hippocampus and compared to enzyme expression in other brain regions. Hippocampus LPL mRNA levels were at least 2.5-fold higher than those detected in the cerebral cortex, cerebellum, and remaining brain regions. Enzyme mass and activity levels in the hippocampus were also increased to a similar degree. De novo synthesis of LPL in the hippocampus was confirmed by [35S]methionine-labeling of the tissue and identification of a 57 kDa protein obtained by immunoprecipitation. Addition of an excess amount of bovine LPL completely prevented the immunoprecipitation of this protein. The effect of nutritional modulations on brain LPL activity was determined after a 12-h fast. While no significant changes were observed in other regions of the brain, hippocampus LPL activity in fasted rats increased by 60% compared to the fed control group. Simultaneously, fasting reduced adipose LPL activity by 60%. Intraperitoneal injection of ACTH over a 5-day period had no effect on hippocampus LPL activity, while adipose LPL levels increased 2.3-fold and heart LPL levels decreased 1.4-fold. We conclude that LPL is synthesized, active and regulated in a tissue-specific manner in the adult rat hippocampus.  相似文献   

15.
Abstract: Delayed increases in the levels of an endogenous N-methyl-D-aspartate receptor agonist, quinolinic acid (QUIN), have been demonstrated following transient ischemia in the gerbil and were postulated to be secondary to induction of indoleamine-2,3-dioxygenase (IDO) and other enzymes of the L-tryptophan-kynurenine pathway. In the present study, proportional increases in IDO activity and QUIN concentrations were found 4 days after 10 min of cerebral ischemia, with both responses in hippocampus > striatum > cerebral cortex > thalamus. These increases paralleled the severity of local brain injury and inflammation. IDO activity and QUIN concentrations were unchanged in the cerebellum of postischemic gerbils, which is consistent with the preservation of blood flow and resultant absence of pathology in this region. Blood QUIN and L-kynurenine concentrations were not affected by ischemia. Brain tissue QUIN levels at 4 days postischemia exceeded blood concentrations, minimizing a role for breakdown of the blood–brain barrier. Marked increases in the activity of kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase were also detected in hippocampus but not in cerebellum on day 4 of recirculation. In vivo synthesis of [13C6]QUIN was demonstrated, using mass spectrometry, in hippocampus but not in cerebellum of 4-day postischemic animals 1 h after intracisternal administration of L-[13C6]tryptophan. However, accumulation of QUIN was demonstrated in both cerebellum and hippocampus of control gerbils following an intracisternal injection of 3-hydroxyanthranilic acid, which verifies the availability of precursor to both regions when administered intracisternally. Notably, although IDO activity and QUIN concentrations were unchanged in the cerebellum of ischemic gerbils, both IDO activity and QUIN content were increased in cerebellum to approximately the same degree as in hippocampus, striatum, cerebral cortex, and thalamus 24 h after immune stimulation by systemic pokeweed mitogen administration, demonstrating that the cerebellum can increase IDO activity and QUIN content in response to immune activation. No changes in kynurenic acid concentrations in either hippocampus, cerebellum, or cerebrospinal fluid were observed in the postischemic gerbils compared with controls, in accordance with the unaffected activity of kynurenine aminotransferase activity. Collectively, these results support roles for IDO, kynureninase, kynurenine 3-hydroxylase, and 3-hydroxyanthranilate-3,4-dioxygenase in accelerating the conversion of L-tryptophan and other substrates to QUIN in damaged brain regions following transient cerebral ischemia. Immunocytochemical results demonstrated the presence of macrophage infiltrates in hippocampus and other brain regions that parallel the extent of these biochemical changes. We hypothesize that increased kynurenine pathway metabolism after ischemia reflects the presence of macrophages and other reactive cell populations at sites of brain injury.  相似文献   

16.
Abstract— Pentobarbitone sodium anaesthesia was found to produce an increase in protein content in some regions of the rat brain, i.e. posterior cortex, caudate nucleus, and a decrease in protein content in the ventral cortex.
Acetylcholinesterase expressed in terms of wet weight was found to increase in the cerebellum, medulla, and to decrease in the medial cortex, hippocampus, thalamus and caudate nucleus. The changes in activity were not explicable in terms of a direct effect of the anaesthetic on the enzyme. A decrease in protein content of rat brain was observed in the frontal cortex, ventral cortex, hippocampus and caudate nucleus after electrical shocks. Following shock avoidance conditioning procedure (shuttle-box), decreases in protein content were observed in the medial cortex, posterior cortex, cerebellum and ventral cortex; in the thalamus an increase in protein content was observed.
Changes in AChE activity were observed following footshock in the frontal cortex and medulla where there was an increase in activity and in the caudate nucleus, hypothalamus, thalamus, and olfactory tubercle where there was a decrease in activity.
Following shock avoidance conditioning the activity of the AChE increased in posterior cortex, hippocampus, thalamus and hypothalamus and the activity of the enzyme decreased in the ventral cortex.  相似文献   

17.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

18.
Abstract

Acetylcholinesterase (AChE) activity of the adenohypophysis, cerebellum, cerebral cortex, hypothalamus, amygdala, hippocampus, midbrain, pons, medulla oblongata and caudate nucleus was determined by a spectro‐photometric method in adult, male rats adapted toan LD 12:12cycle. Results of the study show that AChE activity is highest during the light phase and lowest during the dark phase of the cycle in all the brain areas studied except the adenohypophysis, cerebellum, hippocampus and hypothalamus. These findings expand earlier observations on the circadian variation in rat brain AChE activity and suggests a relationship with reported circadian variation in the acetylcholine levels of rat brain.  相似文献   

19.
Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 μg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.  相似文献   

20.
The aim of this study was to determine whether changes in the circulating thyroid hormone (TH) and brain synaptosomal TH content affected the relative levels of mRNA encoding different thyroid hormone receptor (TR) isoforms in adult rat brain. Northern analysis of polyA+RNA from cerebral cortex, hippocampus and cerebellum of control and hypothyroid adult rats was performed in order to determine the relative expression of all TR isoforms. Circulating and synaptosomal TH concentrations were determined by radioimmunoassay. Region-specific quantitative differences in the expression pattern of all TR isoforms in euthyroid animals and hypothyroid animals were recorded. In hypothyroidism, the levels of TRα2 mRNA (non-T3-binding isoform) were decreased in all brain regions examined. In contrast the relative expression of TRα1 was increased in cerebral cortex and hippocampus, whereas in cerebellum remained unaffected. The TRβ1 relative expression in cerebral cortex and hippocampus of hypothyroid animals was not affected, whereas this TR isoform was not detectable in cerebellum. The TR isoform mRNA levels returned to control values following T4 intraperitoneal administration to the hypothyroid rats. The obtained results show that in vivo depletion of TH regulates TR gene expression in adult rat brain in a region-specific manner. (Mol Cell Biochem 278: 93–100, 2005)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号