首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The immunohistochemical profile of intact and denervated soleus muscle of guinea pigs after sensibilization was studied. It is shown, that intact soleus muscle consists of slow fibers, which have low ATP-ase activity and don't react with monoclonal antibodies against fast myosin heavy chain. No changes of immunohistochemical profile were found after denervation or sensibilization. At the same time, the fibers, reacting with monoclonal antibodies against fast myosin heavy chain and having low ATP-ase activity, were found in denervated muscles after sensibilization. It is concluded, that the synthesis of fast myosin is induced after sensibilization of denervated muscles. Validity of myosin ATP-ase histochemistry for muscle fibers typing is discussed.  相似文献   

2.
After transferrin injection to the slow m. soleus of guinea pig no immunohistochemical changes in myosin composition with monoclonal antibodies (AB) against fast myosin heavy chain (HCf) have been found. All muscles fibers in intact and experimental animals were identified as slow ones (type I of muscle fibers). After colchicine treatment of nerve trunk innervating slow muscle, some muscle fibers reacting with monoclonal AB against myosin HCf have been found. However, after colchicine treatment of nerve trunk and transferrin injection also some muscle fibers in slow muscle reacting with monoclonal AB against myosin HCf have been found. In appears that transferrin probably can not be the factor of neurotrophic control for myosin composition in skeletal muscle.  相似文献   

3.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

4.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

5.
Gliding flight is a postural activity which requires the wings to be held in a horizontal position to support the weight of the body. Postural behaviors typically utilize isometric contractions in which no change in length takes place. Due to longer actin-myosin interactions, slow contracting muscle fibers represent an economical means for this type of contraction. In specialized soaring birds, such as vultures and pelicans, a deep layer of the pectoralis muscle, composed entirely of slow fibers, is believed to perform this function. Muscles involved in gliding posture were examined in California gulls (Larus californicus) and tested for the presence of slow fibers using myosin ATPase histochemistry and antibodies. Surprisingly small numbers of slow fibers were found in the M. extensor metacarpi radialis, M. coracobrachialis cranialis, and M. coracobrachialis caudalis, which function in wrist extension, wing protraction, and body support, respectively. The low number of slow fibers in these muscles and the absence of slow fibers in muscles associated with wing extension and primary body support suggest that gulls do not require slow fibers for their postural behaviors. Gulls also lack the deep belly to the pectoralis found in other gliding birds. Since bird muscle is highly oxidative, we hypothesize that fast muscle fibers may function to maintain wing position during gliding flight in California gulls. J. Morphol. 233:237–247, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Continuous stimulation of a rabbit fast muscle at 10 Hz changes its physiological and biochemical parameters to those of a slow muscle. These transformations include the replacement of myosin of one type by myosin of another type. Two hypotheses could explain the cellular basis of these changes. First, if fibers were permanently programmed to be fast or slow, but not both, a change from one muscle type to another would involve atrophy of one fiber type accompanied by de novo appearance of the other type. Alternatively, preexisting muscle fibers could be changing from the expression of one set of genes to the expression of another. Fluorescein-labeled antibodies against fast (AF) and slow (AS) muscle myosins of rabbits have been prepared by procedures originally applied to chicken muscle. In the unstimulated fast peroneus longus muscle, most fibers stained only with AF; a small percentage stained only with AS; and no fibers stained with both antibodies. In stimulated muscles, most fibers stained with both AF and AS; with increasing time of stimulation, there was a progressive decrease in staining intensity with AF and a progressive increase in staining intensity with AS within the same fibers. These results are consistent with a theory that individual preexisting muscle fibers can actually switch from the synthesis of fast myosin to the synthesis of slow myosin.  相似文献   

7.
A quantitative histochemical study was carried out on axial musculature of Noemacheilus barbatulus L. On the basis of succinate dehydrogenase (SDH) and myofibrillar ATP-ase activity, 5 types of muscle fibers are described. When the SDH method was used, red, tonic, intermediate, and white muscle fibers were easily observed. However, histochemical reaction for myofibrillar ATP-ase activity, after alkaline preincubation (pH = 10.4), revealed another type of fiber zone laying between the intermediate and white muscle fiber regions and forming a transitional zone. Electron microscopic observation showed significant differences in sarcomere organization and thickness of myosin filaments of the various muscle fiber types.  相似文献   

8.
A library of monoclonal antibodies specific for myosin heavy chain (HC) was used to study myosin expression in regenerating fibers. The response to cold injury of slow skeletal ALD muscle previously induced to eliminate SM1 myosin by weight overload was compared to that of its contralateral control. Native gel electrophoresis combined with immunoblotting demonstrated that slow SM1 myosin HC eliminated from hypertrophic muscle reappeared both at the site of active regeneration and unexpectedly, also distal to the site of injury. The regeneration response of hypertrophied muscles was similar to that of the controls. In addition to SM1 myosin HC, ventricular-like and embryonic/fast isoforms were also expressed in both muscles during the early stages of regeneration and disappeared as the muscle fibers matured. These observations demonstrate that regenerating slow muscle fibers reexpress myosins' characteristic of developing muscle irrespective of the myosin phenotype prior to injury. The reappearance of repressed myosin HC in the hypertrophied ALD muscle is consistent with the presence of newly differentiated myonuclei.  相似文献   

9.
With the use of myosin adenosinetriphosphatase (ATPase) and immunofluorescence staining methods, the adaptive responses of intrafusal and extrafusal fibers to endurance swimming were studied in frozen sections of rat soleus (SOL) and extensor digitorum longus (EDL) muscles. Glycogen depletion confirmed muscle fatigue at the end of a standardized bout of exercise. No significant age-dependent changes in myosin isoforms were detected in any fibers. The 12-wk training increased type I fibers by 10.9% in the SOL and type IIa fibers in the EDL by 16.6%. In trained muscle sections, both staining methods identified a permuted chain fiber, expressed the same as the myosin isoform in the bag2 fiber. However, no exercise-induced change of myosin isoform profile was found in the bag1 and bag2 fibers. Myosin ATPase (and immunofluorescence) staining showed the percentage of permuted chain fibers increased from 0 to 6.7% (5.6%) after 6 wk of training and to 19.2% (14.1%) after 12 wk of training and that it was still at 6.1% (4.2%) 10 wks after training. A novel myosin isoform may thus be expressed in nuclear chain fibers by repetitive recruitment of muscle spindles.  相似文献   

10.
This study was aimed to achieve a definitive and unambiguous identification of fiber types in canine skeletal muscles and of myosin isoforms that are expressed therein. Correspondence of canine myosin isoforms with orthologs in other species as assessed by base sequence comparison was the basis for primer preparation and for expression analysis with RT-PCR. Expression was confirmed at protein level with histochemistry, immunohistochemistry, and SDS-PAGE combined together and showed that limb and trunk muscles of the dog express myosin heavy chain (MHC) type 1, 2A, and 2X isoforms and the so-called "type 2dog" fibers express the MHC-2X isoform. MHC-2A was found to be the most abundant isoform in the trunk and limb muscle. MHC-2X was expressed in most but not all muscles and more frequently in hybrid 2A-2X fibers than in pure 2X fibers. MHC-2B was restricted to specialized extraocular and laryngeal muscles, although 2B mRNA, but not 2B protein, was occasionally detected in the semimembranosus muscle. Isometric tension (P(o)) and maximum shortening velocity (V(o)) were measured in single fibers classified on the basis of their MHC isoform composition. Purified myosin isoforms were extracted from single muscle fibers and characterized by the speed (V(f)) of actin filament sliding on myosin in an in vitro motility assay. A close proportionality between V(o) and V(f) indicated that the diversity in V(o) was due to the different myosin isoform composition. V(o) increased progressively in the order 1/slow < 2A < 2X < 2B, thus confirming the identification of the myosin isoforms and providing their first functional characterization of canine muscle fibers.  相似文献   

11.
In this work we studied changes in passive elastic properties of rat soleus muscle fibers subjected to 14 days of hindlimb unloading (HU). For this purpose, we investigated the titin isoform expression in soleus muscles, passive tension-fiber strain relationships of single fibers, and the effects of the thick filament depolymerization on passive tension development. The myosin heavy chain composition was also measured for all fibers studied. Despite a slow-to-fast transformation of the soleus muscles on the basis of their myosin heavy chain content, no modification in the titin isoform expression was detected after 14 days of HU. However, the passive tension-fiber strain relationships revealed that passive tension of both slow and fast HU soleus fibers increased less steeply with sarcomere length than that of control fibers. Gel analysis suggested that this result could be explained by a decrease in the amount of titin in soleus muscle after HU. Furthermore, the thick filament depolymerization was found to similarly decrease passive tension in control and HU soleus fibers. Taken together, these results suggested that HU did not change titin isoform expression in the soleus muscle, but rather modified muscle stiffness by decreasing the amount of titin.  相似文献   

12.
去神经对快,慢肌纤维肌球蛋白ATPase影响的组织化学观察   总被引:2,自引:0,他引:2  
本文用组织化学方法观察了豚鼠比目鱼肌(SOL)和腓骨第三肌(PT)在去神经后其快、慢纤维肌球蛋白ATPase特性的变化。在正常肌肉中Ⅰ型(慢)纤维和Ⅱ型(快)纤维分别具有酸和碱稳定ATPase活性。慢纤维在去神经后出现了碱稳定ATPase活性,而快纤维则无明显变化。结果表明,只有慢纤维的肌球蛋白ATPase特性才与神经支配有关。  相似文献   

13.
In this study, myosin types in human skeletal muscle fibers were investigated with electrophoretic techniques. Single fibers were dissected out of lyophilized surgical biopsies and typed by staining for myofibrillar ATPase after preincubation in acid or alkaline buffers. After 14C-labelling of the fiber proteins in vitro by reductive methylation, the myosin light chain pattern was analysed on two-dimensional gels and the myosin heavy chains were investigated by one-dimensional peptide mapping. Surprisingly, human type I fibers, which contained only the slow heavy chain, were found to contain variable amounts of fast myosin light chains in addition to the two slow light chains LC1s and LC2s. The majority of the type I fibers in normal human muscle showed the pattern LC1s, LC2s and LC1f. Further evidence for the existence in human muscle of a hybrid myosin composed of a slow heavy chain with fast and slow light chains comes from the analysis of purified human myosin in the native state by pyrophosphate gel electrophoresis. With this method, a single band corresponding to slow myosin was obtained; this slow myosin had the light chain composition LC1s, LC2s and LC1f. Type IIA and IIB fibers, on the other hand, revealed identical light chain patterns consisting of only the fast light chains LC1f, LC2f and LC3f but were found to have different myosin havy chains. On the basis of the results presented, we suggest that the histochemical ATPase normally used for fibre typing is determined by the myosin heavy chain type (and not by the light chains). Thus, in normal human muscle a number of 'hybrid' myosins were found to occur, namely two extreme forms of fast myosins which have the same light chains but different heavy chains (IIA and IIB) and a continuum of slow forms consisting of the same heavy chain and slow light chains with a variable fast light chain composition. This is consistent with the different physiological roles these fibers are thought to have in muscle contraction.  相似文献   

14.
  • 1.1. The fiber types of uropod muscles of the crayfish, Procambarus clarkii, were determined by the myofibrillar ATP-ase histochemistry and electrophysiology.
  • 2.2. The ATP-ase histochemistry was carried out on the sections of the whole tailfan and the slow muscles were identified as being of the slow type on the basis of their low staining intensities.
  • 3.3. The location of slow bundles in the mixed type muscles i.e. the dorsal rotator (DRT), the ventral rotator (VRT), and the telson-uropodalis posterior (TUP) was confirmed.
  • 4.4. TUP was newly revealed in this study to be a mixed muscle.
  相似文献   

15.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

16.
The effects of neuromuscular block on the pattern of distribution of myosin isozymes in developing skeletal muscle fibers was examined by immunocytochemistry. The homogeneous population of fibers in the anterior latissimus dorsi (ALD) of the 18-day chick embryo was converted by curare to a mosaic of at least two categories of fibers. Normally all fibers in this slow muscle reacted with antibodies against slow myosin (anti-ALD). They also reacted with an antibody specific for the alkali 1 light chain (anti-delta 1) but not the alkali 2 light chain (anti-delta 2) of fast myosin. After treatment with curare, which inhibits neuronal cell death and increases the number of axonal endings, ALD muscle fibers continued to react with anti-delta 1, but many now reacted with anti-delta 2 as well. The same fibers failed to react with anti-ALD. From this it can be concluded that the myosin in this population was converted to a type not normally present. The changes, therefore, are not merely a result of the preferential loss of a slow type of fiber, nor are they a result of delayed maturation. In contrast, curare had no apparent effect on the fast posterior latissimus dorsi (PLD). As in the normal muscle at 18 days, all fibers reacted strongly with anti-delta 1 and to variable degrees with anti-delta 2, and very few fibers reacted with anti-ALD. Our observations suggest that the dual response to antibodies against fast and slow myosin during development is not a necessary consequence of multiple axon terminals. We present evidence that curare induces the expression of a different myosin in the embryonic ALD, and we suggest that the selective transformation of the fiber population may be a manifestation of a change in composition of the motoneuron pool.  相似文献   

17.
Development of muscle fiber types in the prenatal rat hindlimb   总被引:6,自引:0,他引:6  
Immunohistochemistry was used to examine the expression of embryonic, slow, and neonatal isoforms of myosin heavy chain in muscle fibers of the embryonic rat hindlimb. While the embryonic isoform is present in every fiber throughout prenatal development, by the time of birth the expression of the slow and neonatal isoforms occurs, for the most part, in separate, complementary populations of fibers. The pattern of slow and neonatal expression is highly stereotyped in individual muscles and mirrors the distribution of slow and fast fibers found in the adult. This pattern is not present at the early stages of myogenesis but unfolds gradually as different generations of fibers are added. As has been noted by previous investigators (e.g., Narusawa et al., 1987, J. Cell Biol. 104, 447-459), all of the earliest generation (primary) muscle fibers initially express the slow isoform but some of these primary fibers later lose this expression. In this study we show that loss of slow myosin in these fibers is accompanied by the expression of neonatal myosin. This switch in isoform expression occurs in all primary fibers located in specific regions of particular muscles. However, in other muscles primary fibers which retain their slow expression are extensively intermixed with those that switch to neonatal expression. Later generated (secondary) muscle fibers, which are interspersed among the primary fibers, express neonatal myosin, although a few of them in stereotyped locations later switch from neonatal to slow myosin expression. Many of the observed changes in myosin expression occur coincidentally with the arrival of axons in the limb or the invasion of axons into individual muscles. Thus, although both fiber birth date and intramuscular position are grossly predictive of fiber fate, neither factor is sufficient to account for the final pattern of fiber types seen in the rat hindlimb. The possibility that fiber diversification is dependent upon innervation is tested in the accompanying paper (K. Condon, L. Silberstein, H.M. Blau, and W.J. Thompson, 1990, Dev. Biol. 138, 275-295).  相似文献   

18.
The study was purposed to evaluate the contribution of the reflectory and local components during the chronic stretch of the postural muscle to the attenuation of the unloading-induced fiber size reduction and changes in the myosin heavy chain (MHC) profile. The surgical unilateral deafferentation (dorsal rhizotomy) was used. It was shown that unilateral deafferentation didn't influence on the amelioration of unloading-induced fiber size reduction in chronically stretched soleus muscle. Thus, the results obtained in the present study don't confirm the hypothesis, supposing the predominant contribution of the muscle afferent activation to the attenuation of unloading-induced fiber atrophy. Deafferentation of unloaded as well as control rats leads to the increase of the percentage of fibers expressing slow MYC isoforms.  相似文献   

19.
The fiber-type composition of postnatal chicken leg muscle spindles with from one to four intrafusal fibers was examined in sections incubated with monoclonal antibodies against fast and slow myosin heavy chains. In monofibral spindles the lone intrafusal fiber was almost always fast. In duofibral spindles usually one slow and one fast fiber were present. Trifibral spindles most often displayed two fast and one slow fiber, whereas quadrofibral receptors characteristically contained two slow and two fast fibers. Earlier results showed that the primary intrafusal myotube in nascent spindles has almost always a fast myosin heavy chain profile and that the proportion of slow myotubes and fibers increases as intrafusal fiber bundles grow in size. Data from postnatal chicken leg muscles collected here suggest that up to the first four fibers this proportional increase can be largely accounted for if consecutive intrafusal fibers arise in a fast-slow-fast-slow sequence. The late recognition during myogenesis of primary intrafusal myotubes and their fast myosin heavy chain profiles warrant exploring if nascent chicken muscles spindles are first seeded by fast fetal myoblasts. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Myosin isozymes and their fiber distribution were studied during regeneration of the soleus muscle of young adult (4-6 week old) rats. Muscle degeneration and regeneration were induced by a single subcutaneous injection of a snake toxin, notexin. If reinnervation of the regenerating muscle was allowed to occur (functional innervation nearly complete by 7 days), then fiber diameters continued to increase and by 28 days after toxin treatment they attained the same values as fibers in the contralateral soleus. If the muscles were denervated at the time of toxin injection, the early phases of regeneration still took place but the fibers failed to continue to increase in size. Electrophoresis of native myosin showed multiple bands between 3 and 21 days of regeneration which could be interpreted as indicating the presence of embryonic, neonatal, fast and slow myosins in the innervated muscles. Adult slow myosin became the exclusive from in innervated regenerates. In contrast, adult fast myosin became the predominant form in denervated regenerating muscles. Immunocytochemical localization of myosin isozymes demonstrated that in innervated muscles the slow form began to appear in a heterogeneous fashion at about 7 days, and became the major form in all fibers by 21-28 days. Thus, the regenerated muscle was almost entirely composed of slow fibers, in clear contrast to the contralateral muscle which was still substantially mixed. In denervated regenerating muscles, slow myosin was not detected biochemically or immunocytochemically whereas fast myosin was detected in all denervated fibers by 21-28 days. The regenerating soleus muscle therefore is clearly different from the developing soleus muscle in that the former is composed of a uniform fiber population with respect to myosin transitions. Moreover the satellite cells which account for the regeneration process in the soleus muscle do not appear to be predetermined with respect to myosin heavy chain expression, since the fibers they form can express either slow or fast isoforms. The induction of the slow myosin phenotype is entirely dependent on a positive, extrinsic influence of the nerve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号