首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Size characteristics of oocytes of the elder generation of the end of previtollogenesis, as well as of the beginning and middle of the phase of cytoplasm vacuolization in two forms of Baikal grayling Thymallus baicalensis were studied. In each form, the dependence of oocyte parameter on the age and size of females is traced. During the studied phases of development—at the termination of the period of previtellogenesis and at the proper beginning of the period of vitellogenesis—oocytes of the white and black graylings have similar sizes; cytoplasm vacuolization in white grayling proceeds less actively. It was established that differences in the diameter of mature ovicells in the black and white Baikal graylings result from dissimilar rate of accumulation of trophic substances in the oocytes of the given forms of this species and are determined by differences in the rate of growth of oocytes during the formation in them of yolk inclusions.  相似文献   

2.
Summary The ovaries of the starfish Asterias rubens were studied histologically and ultrastructurally. The reproductive system in female specimens consists of ten separate ovaries, two in each ray. Each ovary is made up of a rachis with lateral primary and secondary folds: the acini maiores and acini minores. The ovarian wall is composed of an outer and an inner part, separated by the genital coelomic sinus. The ovarian lumen contains oocytes in various phases of oogenesis, follicle cells, nurse cells, phagocytosing cells and steroid-synthesizing cells.Oogenesis is divided into four phases: (i) multiplication phase of oogonia, (ii) initial growth phase of oocytes I, (iii) growth phase proper of oocytes I, and (iv) post-growth phase of oocytes I. The granular endoplasmic reticulum and the Golgi complex of the oocytes appear to be involved in yolk formation, while the haemal system, haemal fluid and nurse cells may also be important for vitellogenesis. The haemal system is discussed as most likely being involved in synchronizing the development of the ovaries during the annual reproductive cycle and in inducing, stimulating and regulating the function of the ovaries.Steroid-synthesizing cells are present during vitellogenesis; a correlation between the presence of these cells and vitellogenesis is discussed.  相似文献   

3.
The morphological characters, molecular-genetic features, and patterns of the dorsal fin in different subspecies and forms of Arctic grayling Thymallus arcticus populating Lake Baikal and its tributaries, Irkutsk Reservoir, and Lake Khubsugul have been studied. Three groups are discernable. The first includes the white and black Baikal graylings T. a. baicalensis, as well as the western Siberian T. a. arcticus; the second group is represented by the Kosogol grayling T. a. nigrescens, and the third is composed of T. arcticus ssp. from the Yakchii lakes (the Verkhnyaya Angara basin) with a phenotype close to graylings populating the upper reaches of the Lena River. All of them are distinguished by some morphological characters, elements of the dorsal fin pattern, and by body coloration. The populations of black Baikal graylings are genetically uniform, and their distinctions from white Baikal graylings are insignificant, which agrees with the absence of a considerable divergence of these forms by a complex of meristic characters. It is assumed that in the black and white Baikal graylings the exchange by genetic information has either ceased quite recently, or persists, although, insignificantly. Some genetic remoteness of the west Siberian grayling from Irkutsk Reservoir and Nizhnyaya Tunguska, closely related to the Baikal grayling, is recorded. The formation of the Khubsugul subspecies is possibly a result of the contact of grayling populations during the rearrangements of the river system in the last glaciation period in the upper reaches of Yenisei and Selenga in Mongolia. The habitation in the Baikal system of the Upper Lena graylings indicates a connection between the Lena and Baikal basins in the past. The results of a multivariate analysis of meristic characters and the sequences of mitochondrial DNA confirm the conclusion made by Svetovidov (1931, 1936), concerning the absence of grounds to assign a species status to the Baikal forms.  相似文献   

4.
泥螺卵黄发生过程中线粒体的变化   总被引:11,自引:1,他引:10  
应雪萍  杨万喜 《动物学研究》2001,22(5):T001-T002
利用透射电镜(TEM)技术研究了泥螺卵黄发生过程中线粒体的形态结构的变化特点,结果表明,从卵黄发生早期到晚期,卵母细胞内线粒体经历了从外部形态到内部结构的一系列变化。卵黄合成初期的卵母细胞内,线粒体多,结构典型,仅部分线粒体外膜破裂,嵴 和内膜逐渐消失,卵黄发生中期,线粒体基质空泡化,嵴和内膜消失,腔内充满颗粒状物质,最后演变成卵黄颗粒,随着卵母细胞的发育,卵黄颗粒的数量和直径逐渐增加,卵黄发生后期,卵质中胞器不发达,细胞质中充满卵黄颗粒,在卵黄颗粒之间仅有少量线粒体存在,提供细胞代谢所需的能量,此外,对线粒体在卵黄形成中的功能,去向及行为变化等 进行了讨论。  相似文献   

5.
The effect produced by an eyestalk removal have been studied on Eriocheir females at different physiological stages. In juvenile and prepuberal crabs, the operation induces an important rise of the oocyte diameter. Only a few variations are observed in puberal females oocytes. Cytological changes are found at first at the nucleolar level. The granular area increases and the nucleolar vacuoles volume decreases. Then the granules (precursor material to endogenous yolk) disappear in the reticulum cisternae. At this time, the endogenous yolk seems essentially elaborated within yolk lobules. The envelope of these lobules is enhanced by ribosomes. In juvenile females (oocytes initially in previtellogenesis) exogenous yolk does not appear. Nevertheless in prepuberal females, following eyestalks deprivation, the oocytes, initially at the endogenous vitellogenesis stage, quickly reach the vitellogenesis second stage. In such oocytes, the microvilli development and pinocytose vesicles number are greater than normally. Cytochemical tests reactions do not demonstrate differences in the yolk material (endogenous and exogenous) nature from experimented oocytes and controls. In juvenile and prepuberal oocytes, the multivesicular bodies and lysosomes proliferation, the increase in glycogen and lipids amount express a metabolic disturbance resulting from an acceleration of growth processes. However in eyestalk-less prepuberal females no difference with the control oocytes was noticed.  相似文献   

6.
7.
Study of living frog oocytes with the phase microscope has shown that the early yolk appears in two forms. One of these, the protein yolk, consists of thin, dense, plate-like bodies which in face view are almost always regular hexagons. The other form, the fatty yolk, occurs as clusters of globules of varying sizes. The plate-like bodies occur both singly and in clusters. As the oocytes mature these plate-like bodies grow in size while retaining their hexagonal outline. Mitochondria have been observed to increase in length and numbers as the oocytes mature; they are rods or filaments at all stages of growth up to an oocyte diameter of 300 microns. The oocyte cytoplasm gradually becomes packed with long mitochondria, plate-like bodies, and clusters of globules.  相似文献   

8.
养殖鲥鱼性腺发育的研究   总被引:2,自引:0,他引:2  
经激素处理和生态调控的养殖鲥鱼,能完成性腺发育的全过程,其可分为6个时期,卵细胞发育可相应分为6个时相。与其它鱼类不同,细胞中液泡最早出现在胞质的内缘而不是外缘。大、小核仁数随卵母细胞的发育而变化。成熟卵巢成熟系数为854%~1264%。成熟期卵径为6285~8353μm、精子头径为074~155μm。达性成熟的鲥鱼,冬季卵巢为Ⅱ期、精巢为Ⅱ~Ⅲ期。精、卵巢发育呈现出明显的不同步现象。前者5月底开始进入成熟期,后者7月初进入成熟期。初级卵母细胞由Ⅱ时相发育到Ⅳ时相基本上是同步的。第Ⅳ期卵巢卵径的频率仅出现1个高峰。养殖鲥鱼属1年1次产卵类型。  相似文献   

9.
Histology and histochemistry are useful tools to study reproductive mechanisms in fish and they have been applied in this study. In the bluefin tuna, Thunnus thymus L., oocyte development can be divided into 4 principal phases based on the morphological features of developing oocytes and follicles. The primary growth phase includes oogonia and basophilic or previtellogenic oocytes classified as chromatin-nucleolus and perinucleolus stages. The secondary growth phase is represented by vitellogenic oocytes at early (lipid globule and yolk granule 1), mid (yolk granule 2) and late (yolk granule 3) vitellogenesis stages. The maturation phase involves postvitellogenic oocytes undergoing maturation process. During the spawning period, both postovulatory follicles, which indicate spawning, and atretic follicles can be distinguished in the ovary. Carbohydrates, lipids, proteins and specially those rich in tyrosine, tryptophan, cystine, arginine, lysine and cysteine, as well phospholipids and/or glycolipids and neutral glycoproteins were detected in yolk granules. Moreover, affinity for different lectins (ConA, WGA, DBA and UEA) was detected in vitellogenic oocytes (yolk granules, cortical alveoli, follicular layer and zona radiata), indicating the presence of glycoconjugates with different sugar residues (Mannose- Man- and/or Glucose -Glc-; N-acetyl-D-glucosamine- GlcNAc- and/or sialic acid- NANA-; N-acetyl-D-galactosamine- GalNAc-; L-Fucose -Fuc-). Histochemical techniques also demonstrated the presence of neutral lipids in globules (vacuoles in paraffin sections) and neutral and carboxylated mucosubstances in cortical alveoli. By using anti-vitellogenin (VTG) serum, immunohistochemical positive results were demonstrated in yolk granules, granular cytoplasm and follicular cells of vitellogenic oocytes. Calcium was also detected in yolk granules and weakly in follicular envelope. In females, the gonadosomatic index (GSI) increased progressively from May, during early vitellogenesis, until June during mid and late vitellogenesis, where the highest values were reached. Subsequently, throughout the maturation-spawning phases (July), GSI decreased progressively reaching the minimal values during recovering-resting period (October).  相似文献   

10.
Electron microscope studies on Necturus maculosus oocytes ranging in size from 1.1–1.5 mm in diameter indicate the primary proteinaceous yolk to arise within structures referred to in other amphibian oocytes as yolk precursor sacs or bodies. The origin of these yolk precursor sacs appears to result from the activity of the Golgi complexes which form multivesicular and granular-vesicular bodies, the limiting membrane of which is at times incomplete. During differentiation, the yolk precursor sacs contain small vesicles similar in size to Golgi vesicles, larger vesicles similar to vesicular elements of the agranular endoplasmic reticulum and, on occasion, a portion of a mitochondrion. The interior of these sacs becomes granular, perhaps by a dissolution of the components just described, and soon becomes organized into a crystalline configuration. In oocytes 2.0–2.5 mm in diameter, an extensive micropinocytotic activity begins, continues throughout vitellogenesis, and constitutes the primary mechanism for the formation of secondary yolk protein. Numerous coated and smooth-surfaced vesicles, as well as electron-dense and electronlucent ones, fuse in the cortical ooplasm to form progressively larger yolk platelets.  相似文献   

11.
Oogenesis in the anuran Xenopus laevis can be divided into six stages based on the anatomy of the developing oocyte. Stage I consists of small (50 to 100 μ) colorless oocytes whose cytoplasm is transparent. Their large nuclei and mitochondrial masses are clearly visible in the intact oocyte. Stage II oocytes range up to 450 μ in diameter, and appear white and opaque. Stage I and II are both previtellogenic. Pigment synthesis and yolk accumulation (vitellogenesis) begins during Stage III. Vitellogenesis continues through Stage IV (600 to 1000 μ), the oocytes grow rapidly, and the animal and vegetal hemispheres become differentiated. By Stage V (1000 to 1200 μ) the oocytes have nearly reached their maximum size and yolk accumulation gradually ceases. Stage VI oocytes are characterized by the appearance of an essentially unpigmented equatorial band. They range in size from 1200 to 1300 μ, are postivtellogenic and ready for ovulation. These stages of oocyte development have been correlated with physiological and biochemical data related to oogenesis in Xenopus.  相似文献   

12.
Vitellogenesis in Aedes aegypti of uniform body size was followed at 27 degrees C in narrow time intervals throughout their first reproductive cycle by measuring the length, diameter, and volume of follicles and oocytes, the latter as an expression of the yolk mass (vitellus). Independent of all experimental conditions, a two-step process of elongation was recognized for both follicle length and yolk length, so that growth curves were consistently composed of two linear regressions with different slopes against time. Follicle lengths started to increase immediately after the blood meal, while oocytes took up to 6 h to show a measurable increase in yolk length. The first linear phase continued until 30 h, when yolk length reached 268+/-22 micro m. At this point, a transition occurred where the linearity shifted sharply for the next 6 h to 2-4-times higher slopes for both regressions. This second growth phase represented a 40% elongation of oocytes and follicles. Then, both curves leveled off at their final size, characteristic of mature ovaries: 462+/-10 micro m for oocytes, 489+/-11 micro m for follicles. These values remained constant until oviposition.The first linear growth phase was associated with an equicaloric and synchronous protein and lipid incorporation into the oocytes; levels of these substances reached their maximum by the end of this first phase and remained constant until oviposition. The second linear growth phase was characterized by rapid glycogen incorporation into oocytes from 20 to 100% of the maximum. Subsequently, the surface pattern of the exochorion became visible, marking the end of yolk incorporation. Since eggs are always laid on moist substrates, within 2-3 h of oviposition they double in volume and fresh weight, driven by more than tripling of their water content.When blood-fed females were exposed to five different temperatures between 17 and 37 degrees C, the distinction between the two linear growth phases persisted, but the slopes of the respective regressions, and therefore their durations, were affected. Eggs still matured at 37 degrees C but never hatched and at 12 degrees C only 18% hatched, whereas at all the intermittent temperatures hatching was 80-90%. Oogenesis appears to be limited to the range between 12 and about 32 degrees C.The effects of age, maternal body size and the source of the blood on vitellogenesis were also examined. These parameters affected the onset and/or extent of oogenesis in various ways.  相似文献   

13.
The habitation of the Upper Lena form of grayling in the upper reaches of the Tiya (the northwestern tributary of Lake Baikal) and Barguzin rivers, where Baikal grayling Thymallus baicalensis Dyb. also occurs, was established. The listed forms can be diagnosed from the body coloration, dorsal fin pattern, combination of meristic characters, as well as by molecular-genetic methods. The sympatric habitation of the Upper Lena and Baikal graylings in the northern tributaries of Baikal, considerable phenotypic and genetic differences, as well as the absence of individuals with intermediate characters, make it possible to consider them as independent species. The results indicate the need to revise the intraspecies structure of the Arctic grayling T. arcticus (Pall.) and the entire genus Thymallus. The localization of populations of the Upper Lena grayling in the upper reaches of Baikal tributaries testifies to its possible penetration of the Baikal basin by means of temporary river catchments that formed in the past and which are probable at present at watersheds with the Lena River. A wider distribution of this form is apparently hindered by the pressure of aboriginal species.  相似文献   

14.
Injection of the protein dye Fast Green or the fluid-phase probe fluorescein dextran into the haemolymph of vitellogenic female desert locusts (Schistocerca gregaria) resulted in their incorporation into oocytes. We used Fast Green to study the physical dynamics of yolk deposition during vitellogenesis. Timed maternal injections of Fast Green reveal that yolk deposition and oocyte growth are inextricably linked during vitellogenesis, and that little or no yolk movement occurs within oocytes prior to embryogenesis. The yolk granules laid down early during vitellogenesis lie at the centre of the egg, with yolk granules deposited later packed around these, such that they lie progressively closer to the eventual egg surface. In contrast, during early embryogenesis yolk granules migrate in a manner that closely resembles the movement of early cleavage nuclei. We find fluorescein dextran to be a clear, robust and developmentally inert marker for the timing of maternal injections relative to vitellogenesis in S. gregaria, and we propose its use in parental RNAi or morpholino knockdown experiments. With such experiments in mind, we show that fluorescein-labelled DNA oligonucleotides are internalized within oocytes during vitellogenesis. However, neither Fast Green, fluorescein dextran nor fluorescein-labelled DNA oligonucleotides are detectably transferred from yolk granules to embryonic cells during embryogenesis, and our initial attempts at parental RNAi using maternal injections of dsRNA targeted to late vitellogenesis have proved unsuccessful.  相似文献   

15.
Cathepsin D Activity in the Vitellogenesis of Xenopus laevis   总被引:3,自引:3,他引:0  
An ovarian extract of Xenopus laevis exhibited in SDS-PAGE analyses an activity cleaving vitellogenin to lipovitellins under mildly acidic conditions. This activity was pepstatin-sensitive and inhibited by monospecific anti-rat liver cathepsin D antibody and thus identified as cathepsin D. Immunoblot analysis showed that two proteins of 43 kDa and 36 kDa immunoreacted with the antibody.
Immunocytochemical staining revealed that the enzyme was located in the cortical cytoplasm of stage I and II oocytes and in small yolk platelets and nascent forms of large yolk platelets in the cortical cytoplasm of stage III oocytes. In stage IV and V oocytes, small yolk platelets retained the immuno-staining but large yolk platelets decreased it. No immuno-positive signals were observed in oocytes at stage VI. When examined by immunoelectron microscopy, gold particles indicated that cathepsin D was located on dense lamellar bodies in the cortical cytoplasm of stage I and II oocytes. The particles were located on primordial yolk platelets and on the superficial layer of small yolk platelets in stage III oocytes, while they were sparse or not present at all on large yolk platelets in stage IV and V oocytes. These results indicate that cathepsin D plays a key role in vitellogenesis by cleaving endocytosed vitellogenin to yolk proteins in developing oocytes.  相似文献   

16.
Ovaries from the spider crab, Libinia emarginata L. were studied to learn more of vitellogenesis in crustaceans. Oogonia and previtellogenic oocytes were found in the core of the ovaries. Vitellogenic oocytes are located more peripherally. Profiles of the endoplasmic reticulum are abundant in the vitellogenic oocytes. The granular and agranular reticulum as well as the Golgi complex are active in yolk synthesis. As vitellogenesis proceeds, yolk precursors are incorporated into the egg by micropinocytosis at the egg surface. Thus, in Libinia, yolk materials appear to be derived from both intra- and extraoocytic sources.  相似文献   

17.
Summary Histological and histochemical characteristics were studied inHalobatrachus didactylus (Schneider, 1801) during oogenesis. Three phases could be differentiated: previtellogenesis (oogonia and basophilic oocytes), vitellogenesis (yolk synthesis) and maturation-spawning. Glycogen, glycoproteins and proteins rich in certain amino acids were present in the previtellogenic as well as in the vitellogenic cytoplasm oocytes. No acid mucosubstances were detected. Three types of yolk (vesicles, vacuoles and granules) contained different types of organic reserves; granules were essentially proteic whereas globules were lipidic. Carbohydrates and proteins were present in vesicles.  相似文献   

18.
The surface of a mature, pelagic C-O sole egg is composed of polygonal chambers having four to eight sides, most of which are hexagonally shaped. This honeycomb pattern initially appears on primary oocytes as a thin layer of compact, electron-dense material. Discrete thickenings begin to develop on the envelope of perinuclear stage oocytes. The thickenings lengthen and thin to form the hexagonal walls of the envelope in oocytes undergoing yolk vesicle formation. The walls of each hexagonal chamber occur in an area corresponding to the lateral margins of the adjacent follicle cell, suggesting that the hexagonal walls are produced by the follicle cells. The hexagonal layer is nearly complete at the beginning of vitellogenesis, and as vitellogenesis continues, a striated envelope layer composed of fibrillar lamellae develops between the oocyte and the hexagonal layer. The striated layer appears to be secreted by the oocyte. After vitellogenesis is completed, oocytes are ovulated and double in size during a period of maturation. Concurrently, the striated primary envelope stretches and thins into eight to nine horizontal lamellae. On the mature egg surface, the polygonal chambers are about 24–31 μm in diameter. Within each chamber there is a subpattern of polygonal areas; each polygon is 1.5–2.0 μm in diameter, and circumscribes a pore canal opening. This exceptional envelope may furnish the egg with some degree of protection, resiliency, and buoyancy, but its specific functions are not known.  相似文献   

19.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

20.
Light and electron microscope studies were made on harvestman oocytes during the course of their origin, differentiation, and vitellogenesis. The germ cells appear to originate from the ovarian epithelium. They subsequently migrate to the outer surface of the epithelium, where they remain attached often by means of stalk cells which suspend them in the hemocoel during oogenesis. The “Balbiani bodies,” “yolk nuclei,” or “nuage” constitute a prominent feature of young, previtellogenic oocytes, and take the form of large, but variable sizes of electron-dense cytoplasmic aggregates with small fibrogranular components. The cytoplasmic aggregates fragment and disperse, and cannot be detected in vitellogenic oocytes. The young oocytes become surrounded by a vitelline envelope that appears to represent a secretory product of the oocyte. The previtellogenic oocytes are impermeable to horseradish peroxidase under both in vivo and in vitro conditions. In addition to mitochondria, dictyosomes, and abundant ribosomes, the ooplasm of the previtellogenic oocyte acquires both vesicular and lamellar forms of the rough-surfaced endoplasmic reticulum. In many areas, a dense homogeneous product appears within the cisternae of the endoplasmic reticulum and represents nascent yolk protein synthesized by the oocyte during early stages of vitellogenesis. Later in vitellogenesis, the oocyte becomes permeable to horseradish peroxidase under both in vivo and in vitro conditions. This change is associated with a massive process of micropinocytosis which is reflected in the presence of large numbers of vesicles of variable form and structure in the cortical ooplasm. Both spherical and tubular vesicles are present, as are coated and uncoated vesicles. Stages in the fusion of the vesicles with each other and with developing yolk platelets are illustrated. In the harvester oocytes, vitellogenesis is a process that involves both autosynthetic and heterosynthetic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号