首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). The consistent metabolic abnormality in all forms of X-ALD is an inherited defect in the peroxisomal β-oxidation of very long chain FAs (VLCFAs >C22:0) and the resultant pathognomic accumulation of VLCFA. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of a potent histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA) in inducing the expression of ABCD2 [adrenoleukodystrophy-related protein (ALDRP)], and normalizing the peroxisomal β-oxidation, as well as the saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and monounsaturated VLCFA (C26:1), was also reduced by SAHA treatment. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes, we also examined the effects of SAHA in VLCFA-induced inflammatory response. SAHA treatment decreased the inflammatory response as expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. These observations indicate that SAHA corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be an ideal drug candidate to be tested for X-ALD therapy in humans.  相似文献   

2.
3.
The inherited peroxisomal disorder X-linked adrenoleukodystrophy (X-ALD), associated with neurodegeneration and inflammatory cerebral demyelination, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (ALDP). ABCD1 transports CoA-esters of very long-chain fatty acids (VLCFA) into peroxisomes for degradation by β-oxidation; thus, ABCD1 deficiency results in VLCFA accumulation. The closest homologue, ABCD2 (ALDRP), when overexpressed, compensates for ABCD1 deficiency in X-ALD fibroblasts and in Abcd1-deficient mice. Microglia/macrophages have emerged as important players in the progression of neuroinflammation. Human monocytes, lacking significant expression of ABCD2, display severely impaired VLCFA metabolism in X-ALD. Here, we used thioglycollate-elicited primary mouse peritoneal macrophages (MPMΦ) from Abcd1 and Abcd2 single- and double-deficient mice to establish how these mutations affect VLCFA metabolism. By quantitative RT-PCR, Abcd2 mRNA was about half as abundant as Abcd1 mRNA in wild-type and similarly abundant in Abcd1-deficient MPMΦ. VLCFA (C26∶0) accumulated about twofold in Abcd1-deficient MPMΦ compared with wild-type controls, as measured by gas chromatography-mass spectrometry. In Abcd2-deficient macrophages VLCFA levels were normal. However, upon Abcd1/Abcd2 double-deficiency, VLCFA accumulation was markedly increased (sixfold) compared with Abcd1-deficient MPMΦ. Elovl1 mRNA, encoding the rate-limiting enzyme for elongation of VLCFA, was equally abundant across all genotypes. Peroxisomal β-oxidation of C26∶0 amounted to 62% of wild-type activity in Abcd1-deficient MPMΦ and was significantly more impaired (29% residual activity) upon Abcd1/Abcd2 double-deficiency. Single Abcd2 deficiency did not significantly compromise β-oxidation of C26∶0. Thus, the striking accumulation of VLCFA in double-deficient MPMΦ compared with single Abcd1 deficiency was due to the loss of ABCD2-mediated, compensatory transport of VLCFA into peroxisomes. We propose that moderate endogenous expression of Abcd2 in Abcd1-deficient murine macrophages prevents the severe metabolic phenotype observed in human X-ALD monocytes, which lack appreciable expression of ABCD2. This supports upregulation of ABCD2 as a therapeutic concept in X-ALD.  相似文献   

4.
In X-ALD, mutation/deletion of ALD gene (ABCD1) and the resultant very long chain fatty acid (VLCFA) derangement has dramatically opposing effects in astrocytes and oligodendrocytes. While loss of Abcd1 in astrocytes produces a robust inflammatory response, the oligodendrocytes undergo cell death leading to demyelination in X-linked adrenoleukodystrophy (X-ALD). The mechanisms of these distinct pathways in the two cell types are not well understood. Here, we investigated the effects of Abcd1-knockdown and the subsequent alteration in VLCFA metabolism in human U87 astrocytes and rat B12 oligodendrocytes. Loss of Abcd1 inhibited peroxisomal β-oxidation activity and increased expression of VLCFA synthesizing enzymes, elongase of very long chain fatty acids (ELOVLs) (1 and 3) in both cell types. However, higher induction of ELOVL''s in Abcd1-deficient B12 oligodendrocytes than astrocytes suggests that ELOVL pathway may play a prominent role in oligodendrocytes in X-ALD. While astrocytes are able to maintain the cellular homeostasis of anti-apoptotic proteins, Abcd1-deletion in B12 oligodendrocytes downregulated the anti-apototic (Bcl-2 and Bcl-xL) and cell survival (phospho-Erk1/2) proteins, and upregulated the pro-apoptotic proteins (Bad, Bim, Bax and Bid) leading to cell loss. These observations provide insights into different cellular signaling mechanisms in response to Abcd1-deletion in two different cell types of CNS. The apoptotic responses were accompanied by activation of caspase-3 and caspase-9 suggesting the involvement of mitochondrial-caspase-9-dependent mechanism in Abcd1-deficient oligodendrocytes. Treatment with histone deacetylase (HDAC) inhibitor suberoylanilide hydroxamic acid (SAHA) corrected the VLCFA derangement both in vitro and in vivo, and inhibited the oligodendrocytes loss. These observations provide a proof-of principle that HDAC inhibitor SAHA may have a therapeutic potential for X-ALD.  相似文献   

5.
The neurodegenerative disorder X-linked adrenoleukodystrophy (X-ALD) is caused by ABCD1 mutations and characterized by very long-chain fatty acid (VLCFA) accumulation. Cholesterol-lowering normalized VLCFA in fibroblasts and plasma of X-ALD patients. We show that in cultured cells, cholesterol-loading induces ABCD1. In X-ALD mice, plasma cholesterol is elevated and not further increasable by cholesterol-feeding, whereas hepatic HMG-CoA reductase and Abcd2 are downregulated. Upon cholesterol modulation, brain VLCFA increased in X-ALD mice, but decreased in controls. In murine X-ALD fibroblasts, cholesterol-lowering did not normalize VLCFA. Thus, ALDP-deficiency and VLCFA are linked to cholesterol but species differences complicate evaluating cholesterol-lowering drugs in X-ALD mice.  相似文献   

6.
X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder, is associated with mutation in the ABCD1 gene which encodes a peroxisomal ATP-binding cassette transporter for very long-chain fatty acids (VLCFA). The biochemical hallmark of the disease is the accumulation of VLCFA. Peroxisomal defect in microglia being now considered a priming event in the pathology, we have therefore generated murine microglial cells mutated in the Abcd1 gene and its closest homolog, the Abcd2 gene. Using CRISPR/Cas9 gene editing strategy, we obtained 3 cell clones with a single or double deficiency. As expected, only the combined absence of ABCD1 and ABCD2 proteins resulted in the accumulation of VLCFA. Ultrastructural analysis by electron microscopy revealed in the double mutant cells the presence of lipid inclusions similar to those observed in brain macrophages of patients. These observations are likely related to the increased level of cholesterol and the accumulation of neutral lipids that we noticed in mutant cells. A preliminary characterization of the impact of peroxisomal defects on the expression of key microglial genes such as Trem2 suggests profound changes in microglial functions related to inflammation and phagocytosis. The expression levels of presumed modifier genes have also been found modified in mutant cells, making these novel cell lines relevant for use as in vitro models to better understand the physiopathogenesis of X-ALD and to discover new therapeutic targets.  相似文献   

7.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by impaired degradation of very long-chain fatty acids (VLCFAs) due to mutations in the ABCD1 gene responsible for VLCFA transport into peroxisomes. Lorenzo''s oil, a 4:1 mixture of glyceryl trioleate and glyceryl trierucate, has been used to reduce the saturated VLCFA level in the plasma of X-ALD patients; however, the mechanism by which this occurs remains elusive. We report the biochemical characterization of Lorenzo''s oil activity toward elongation of very long-chain fatty acid (ELOVL) 1, the primary enzyme responsible for the synthesis of saturated and monounsaturated VLCFAs. Oleic and erucic acids inhibited ELOVL1, and, moreover, their 4:1 mixture (the FA composition of Lorenzo''s oil) exhibited the most potent inhibitory activity. The kinetics analysis revealed that this was a mixed (not a competitive) inhibition. At the cellular level, treatment with the 4:1 mixture reduced the level of SM with a saturated VLCFA accompanied by an increased level of SM with a monounsaturated VLCFA, probably due to the incorporation of erucic acid into the FA elongation cycle. These results suggest that inhibition of ELOVL1 may be an underlying mechanism by which Lorenzo''s oil exerts its action.  相似文献   

8.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease caused by mutations in the ABCD1 gene, which encodes a peroxisomal ABC transporter, ALDP, supposed to participate in the transport of very long chain fatty acids (VLCFA). The adrenoleukodystrophy-related protein (ALDRP), which is encoded by the ABCD2 gene, is the closest homolog of ALDP and is considered as a potential therapeutic target since functional redundancy has been demonstrated between the two proteins. Pharmacological induction of Abcd2 by fibrates through the activation of PPARalpha has been demonstrated in rodent liver. DHEA, the most abundant steroid in human, is described as a PPARalpha activator and also as a prohormone able to mediate induction of several genes. Here, we explored the in vitro and in vivo effects of DHEA on the expression of peroxisomal ABC transporters. We show that Abcd2 and Abcd3 but not Abcd4 are induced in primary culture of rat hepatocytes by DHEA-S. We also demonstrate that Abcd2 and Abcd3 but not Abcd4 are inducible by an 11-day treatment with DHEA in the liver of male rodents but not in brain, testes and adrenals. Finally and contrary to Abcd3, we show that the mechanism of induction of Abcd2 is independent of PPARalpha.  相似文献   

9.
Peroxisomes are essential organelles exerting key functions in fatty acid metabolism such as the degradation of very long-chain fatty acids (VLCFAs). VLCFAs accumulate in X-adrenoleukodystrophy (X-ALD), a disease caused by deficiency of the Abcd1 peroxisomal transporter. Its closest homologue, Abcd2, exhibits a high degree of functional redundancy on the catabolism of VLCFA, being able to prevent X-ALD-related neurodegeneration in the mouse. In the search for specific roles of Abcd2, we screened fatty acid profiles in organs and primary neurons of mutant knockout mice lacking Abcd2 in basal conditions and under dietary challenges. Our results indicate that ABCD2 plays a role in the degradation of long-chain saturated and omega9-monounsaturated fatty acids and in the synthesis of docosahexanoic acid (DHA). Also, we demonstrated a defective VLCFA beta-oxidation ex vivo in brain slices of Abcd1 and Abcd2 knockouts, using radiolabeled hexacosanoic acid and the precursor of DHA as substrates. As DHA levels are inversely correlated with the incidence of Alzheimer's and several degenerative conditions, we suggest that ABCD2 may act as modulator/modifier gene and therapeutic target in rare and common human disorders.  相似文献   

10.
Peroxisomal ABC transporters encoded by the ABCD genes are thought to participate in the import of specific fatty acids in the peroxisomal matrix. ABCD1 deficiency is associated with X-linked adrenoleukodystrophy (X-ALD), the most frequent peroxisomal disorder which is characterized by the accumulation of saturated very-long-chain fatty acids (VLCFA). ABCD2 (the closest homolog of ABCD1) and ABCD3 have been shown to have partial functional redundancy with ABCD1; only when overexpressed, they can compensate for VLCFA accumulation. Other lipids, for instance polyunsaturated fatty acids (PUFA), should be possible candidate substrates for the ABCD2 and ABCD3 gene products, ALDRP and PMP70 respectively. Moreover, PUFA, which are known regulators of gene expression, could therefore represent potent inducers of the ABCD genes. To test this hypothesis, littermates of n-3-deficient rats were subjected to an n-3-deficient diet or equilibrated diets containing ALA (alpha-linolenic acid, 18:3n-3) as unique source of n-3 fatty acids or ALA plus DHA (docosahexaenoic acid, 22:6n-3) at two different doses. We analyzed the expression of peroxisomal ABC transporters and of the peroxisomal acyl-CoA oxidase gene 1 (Acox1) in adrenals, brain and liver. Whatever the diet, we did not observe any difference in gene expression in adrenals and brain. However, the hepatic expression level of Abcd2 and Abcd3 genes was found to be significantly higher in the n-3-deficient rats than in the rats fed the ALA diet or the DHA supplemented diets. This was accompanied by important changes in hepatic fatty acid composition. In summary, the hepatic expression of Abcd2 and Abcd3 but not of Abcd1 and Abcd4 appears to be highly sensitive towards dietary PUFA. This difference could be linked to the substrate specificity of the peroxisomal ABC transporters and a specific involvement of Abcd2 and Abcd3 in PUFA metabolism.  相似文献   

11.
X-linked adrenoleukodystrophy (X-ALD) is a rare neurodegenerative disorder characterized by the accumulation of very-long-chain fatty acids resulting from a β-oxidation defect. Oxidative stress and inflammation are also key components of the pathogenesis. X-ALD is caused by mutations in the ABCD1 gene, which encodes for a peroxisomal half ABC transporter predicted to participate in the entry of VLCFA-CoA into the peroxisome, the unique site of their β-oxidation. Two homologous peroxisomal ABC transporters, ABCD2 and ABCD3 have been proven to compensate for ABCD1 deficiency when overexpressed. Pharmacological induction of these target genes could therefore represent an alternative therapy for X-ALD patients. Since LXR activation was shown to repress ABCD2 expression, we investigated the effects of LXR antagonists in different cell lines. Cells were treated with GSK(17) (a LXR antagonist recently discovered from the GlaxoSmithKline compound collection), 22(S)-hydroxycholesterol (22S-HC, another LXR antagonist) and 22R-HC (an endogenous LXR agonist). We observed up-regulation of ABCD2, ABCD3 and CTNNB1 (the gene encoding for β-catenin, which was recently demonstrated to induce ABCD2 expression) in human HepG2 hepatoma cells and in X-ALD skin fibroblasts treated with LXR antagonists. Interestingly, induction in X-ALD fibroblasts was concomitant with a decrease in oxidative stress. Rats treated with 22S-HC showed hepatic induction of the 3 genes of interest. In human, we show by multiple tissue expression array that expression of ABCD2 appears to be inversely correlated with NR1H3 (LXRα) expression. Altogether, antagonists of LXR that are currently developed in the context of dyslipidemia may find another indication with X-ALD.  相似文献   

12.
Abstract: X-Adrenoleukodystrophy (X-ALD) is an inherited metabolic disorder of very long-chain fatty acids (VLCFA) with subsequent manifestation of neuroinflammatory disease. To investigate the possible role of proinflammatory cytokines in the X-ALD disease process, we examined the effect of cytokines on the metabolism of VLCFA in C6 glial cells expressing oligodendrocyte-like properties. C6 glial cells under serum-free conditions were treated with different combinations of cytokines (tumor necrosis factor-α, interleukin-1β, interferon-γ) or cytokine with bacterial lipopolysaccharide (LPS). Cytokine-treated C6 cells had higher concentrations of VLCFA, measured as percent weight and also as C26:0/C22:0 ratio, which were 300–400% as compared with the controls. We also found increased levels of C26:1 in cytokine-treated cells. The accumulation of VLCFA paralleled the decrease (35–55%) in peroxisomal β-oxidation activity and a 12- to 14-fold increase in the production of nitric oxide (NO). Individual cytokines were unable either to produce NO or to increase the levels of VLCFA in C6 cells. Inhibition of cytokine-induced NO production by l -N-methylarginine, an inhibitor of NO synthase (NOS), and N-acetylcysteine, an inhibitor of cytokine-mediated induction of inducible NOS, normalized the peroxisomal β-oxidation activity and the levels of VLCFA, suggesting a role for the proinflammatory cytokines and NO toxicity in the neuropathological changes associated with abnormal VLCFA metabolism (e.g., X-ALD). X-ALD is a peroxisomal disease having deficient oxidation of VLCFA, resulting in the excessive accumulation of VLCFA in all tissues but especially in brain. We observed greater increase in levels of VLCFA in the inflammatory region of ALD brain (in the demyelinating plaque and the area around the plaque) than in the normal-looking area away from the plaque; this also indicates that cytokines in the proinflammatory region may augment the VLCFA defect caused by the inherited abnormality in X-ALD brain. Although C6 glial cultured cells do not reflect the X-ALD model precisely, the observed relationship between the cytokine-induced inhibition of the oxidation of VLCFA, excessive accumulation of VLCFA, and excessive production of NO and their normalization by inhibitors of NOS in C6 glial cells suggests that NO-mediated toxicity may play a role in VLCFA-associated neuroinflammatory diseases (e.g., X-ALD).  相似文献   

13.
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.  相似文献   

14.
The purpose of the present study is to identify bioactive compounds with potential for X-linked adrenoleukodystrophy (X-ALD) pharmacological therapy. Various plant natural products including flavonoids were tested for their ability to ameliorate the abnormality of very long chain fatty acid (VLCFA) metabolism in cultured skin-fibroblasts from X-ALD patients. Of the compounds tested, baicalein 5,6,7-trimethyl ether (baicalein-tri-Me) was found to significantly stimulate the VLCFA beta-oxidation activity. Furthermore, the incorporation of [1-(14)C]lignoceric acid into cholesteryl esters was markedly reduced towards the normal level and the VLCFA (C24:0 and C26:0) content was decreased. These results make baicalein-tri-Me a candidate for the therapeutic compound for X-ALD.  相似文献   

15.
This work analyzes the thermogenic flux induced by the very long-chain fatty acid (VLCFA) lignoceric acid (C24:0) in isolated peroxisomes. Specific metabolic alterations of peroxisomes are related to a variety of disorders, the most frequent one being the neurodegenerative inherited disease X-linked adrenoleukodystrophy (X-ALD). A peroxisomal transport protein is mutated in this disorder. Due to reduced catabolism and enhanced fatty acid (FA) elongation, VLCFA accumulates in plasma and in all tissues, contributing to the clinical manifestations of this disorder. During peroxisomal metabolism, heat is produced but it is considered lost. Instead, it is a form of energy that could play a role in molecular mechanisms of this pathology and other neurodegenerative disorders. The thermogenic flux induced by lignoceric acid (C24:0) was estimated by isothermal titration calorimetry in peroxisomes isolated from HepG2 cells and from fibroblasts obtained from patients with X-ALD and healthy subjects. Heat flux induced by lignoceric acid in HepG2 peroxisomes was exothermic, indicating normal peroxisomal metabolism. In X-ALD peroxisomes the heat flux was endothermic, indicating the requirement of heat/energy, possibly for cellular metabolism. In fibroblasts from healthy subjects, the effect was less pronounced than in HepG2, a kind of cell known to have greater FA metabolism than fibroblasts. Our hypothesis is that heat is not lost but it could act as an activator, for example on the heat-sensitive pathway related to TRVP2 receptors. To investigate this hypothesis we focused on peroxisomal metabolism, considering that impaired heat generation could contribute to the development of peroxisomal neurodegenerative disorders.  相似文献   

16.
X-linked adrenoleukodystrophy (X-ALD), an inherited peroxisomal disorder, is caused by mutations in the ABCD1 gene encoding the peroxisomal ATP-binding cassette (ABC) transporter ABCD1 (adrenoleukodystrophy protein, ALDP). Biochemically, X-ALD is characterized by an accumulation of very long-chain fatty acids and partially impaired peroxisomal β-oxidation. In this study, we used primary human fibroblasts from X-ALD and Zellweger syndrome patients to investigate the peroxisomal β-oxidation defect. Our results show that the degradation of C26:0-CoA esters is as severely impaired as degradation of unesterified very long-chain fatty acids in X-ALD and is abolished in Zellweger syndrome. Interestingly, the β-oxidation rates for both C26:0-CoA and C22:0-CoA were similarly affected, although C22:0 does not accumulate in patient fibroblasts. Furthermore, we show that the β-oxidation defect in X-ALD is directly caused by ABCD1 dysfunction as blocking ABCD1 function with a specific antibody reduced β-oxidation to levels observed in X-ALD fibroblasts. By quantification of mRNA and protein levels of the peroxisomal ABC transporters and by blocking with specific antibodies, we found that residual β-oxidation activity toward C26:0-CoA in X-ALD fibroblasts is mediated by ABCD3, although the efficacy of ABCD3 appeared to be much lower than that of ABCD1. Finally, using isolated peroxisomes, we show that β-oxidation of C26:0-CoA is independent of additional CoA but requires a cytosolic factor of >10-kDa molecular mass that is resistant to N-ethylmaleimide and heat inactivation. In conclusion, our findings in human cells suggest that, in contrast to yeast cells, very long-chain acyl-CoA esters are transported into peroxisomes by ABCD1 independently of additional synthetase activity.  相似文献   

17.
X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder and is characterized by a striking and unpredictable variation in phenotypic expression. It ranges from a rapidly progressive and fatal cerebral demyelinating disease in childhood (CCALD), to the milder slowly progressive form in adulthood (AMN). X-ALD is caused by mutations in the ABCD1 gene that encodes a peroxisomal membrane located ABC half-transporter named ALDP. Mutations in ALDP result in reduced beta-oxidation of very long-chain fatty acids (VLCFA, >22 carbon atoms) in peroxisomes and elevated levels of VLCFA in plasma and tissues. Previously, it has been shown that culturing skin fibroblasts from X-ALD patients in lipoprotein-deficient medium results in reduced VLCFA levels and increased expression of the functionally redundant ALD-related protein (ALDRP). The aim of this study was to further resolve the interaction between cholesterol and VLCFA metabolism in X-ALD. Our data show that the reduction in 26:0 in X-ALD fibroblasts grown in lipoprotein-deficient culture medium (free of cholesterol) is offset by a significant increase in both the level and synthesis of 26:1. We also demonstrate that cholesterol-deprivation results in increased expression of stearoyl-CoA-desaturase (SCD) and increased desaturation of 18:0 to 18:1. Finally, there was no increase in [1-(14)C]-26:0 beta-oxidation. Taken together, we conclude that cholesterol-deprivation reduces saturated VLCFA, but increases mono-unsaturated VLCFA. These data may have implications for treatment of X-ALD patients with lovastatin.  相似文献   

18.
Park JA  Jun KR  Han SH  Kim GH  Yoo HW  Hur YJ 《Gene》2012,498(1):131-133
X-linked adrenoleukodystrophy (ALD; MIM #300100) is a neurodegenerative disorder caused by mutations in the ABCD1 adrenoleukodystrophy protein gene. The ABCD1 gene mutations have been reported by laboratories in China and Japan, but not in Korea. This case report describes a Korean boy diagnosed with X-ALD. Direct sequencing for the ABCD1 gene in this boy and his mother detected Tyr620His missense mutation, caused by cDNA nucleotide change 1858 T>C in exon 8 (c.1858T>C). This missense variant was novel and predicted to be possibly damaging by the PolyPhen and SIFT prediction software. Moreover, this is the first report in Korean.  相似文献   

19.
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes a peroxisomal member of the ATP-binding cassette (ABC) transporter subfamily D called ALDP. ALDP is supposed to function as a homodimer allowing the entry of CoA-esters of very-long chain fatty acids (VLCFA) into the peroxisome, the unique site of their β-oxidation. ALDP deficiency can be corrected by overexpression of ALDRP, its closest homolog. However, the exact nature of the substrates transported by ALDRP and its relationships with ALDP still remain unclear. To gain insight into the function of ALDRP, we used cell models allowing the induction in a dose-dependent manner of a wild type or a mutated non-functional ALDRP-EGFP fusion protein. We explored the consequences of the changes of ALDRP expression levels on the fatty acid content (saturated, monounsaturated, and polyunsaturated fatty acids) in phospholipids as well as on the levels of β-oxidation of 3 suspected substrates: C26:0, C24:0, and C22:6n-3 (DHA). We found an inverse correlation between the fatty acid content of saturated (C26:0, C24:0) and monounsaturated (C26:1, C24:1) VLCFA and the expression level of ALDRP. Interestingly, we obtained a transdominant-negative effect of the inactive ALDRP-EGFP on ALDP function. This effect is due to a physical interaction between ALDRP and ALDP that we evidenced by proximity ligation assays and coimmunoprecipitation. Finally, the β-oxidation assays demonstrate a role of ALDRP in the metabolism of saturated VLCFA (redundant with that of ALDP) but also a specific involvement of ALDRP in the metabolism of DHA.  相似文献   

20.
X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARalpha-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARalpha independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号