首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rahman M  Kundu JK  Shin JW  Na HK  Surh YJ 《PloS one》2011,6(11):e28065
Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Docosahexaenoic acid (DHA), a representative ω-3 polyunsaturated fatty acid, has been reported to possess anti-inflammatory and chemopreventive properties. In the present study, we investigated the molecular mechanisms underlying the inhibitory effects of DHA on UVB-induced inflammation in mouse skin. Our study revealed that topical application of DHA prior to UVB irradiation attenuated the expression of cyclooxygenase-2 (COX-2) and NAD(P)H:oxidase-4 (NOX-4) in hairless mouse skin. DHA pretreatment also attenuated UVB-induced DNA binding of nuclear factor-kappaB (NF-κB) through the inhibition of phosphorylation of IκB kinase-α/β, phosphorylation and degradation of IκBα and nuclear translocation of p50 and p65. In addition, UVB-induced phosphorylation of p65 at the serine 276 residue was significantly inhibited by topical application of DHA. Irradiation with UVB induced phosphorylation of mitogen and stress-activated kinase-1 (MSK1), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase, and all these events were attenuated by pretreatment with DHA. Blocking ERK and p38 MAP kinase signaling by U0126 and SB203580, respectively, diminished MSK1 phosphorylation in UVB-irradiated mouse skin. Pretreatment with H-89, a pharmacological inhibitor of MSK1, abrogated UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 in mouse skin. In conclusion, topically applied DHA inhibits the UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 by blocking the phosphorylation of MSK1, a kinase downstream of ERK and p38 MAP kinase, in hairless mouse skin.  相似文献   

2.
Ultraviolet B (UVB) radiation induces inflammation in human skin. Extracellular nucleotides are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. In this study, we investigated the involvement of extracellular nucleotides and P2 receptors in UVB-radiation-induced inflammation using human keratinocyte-derived HaCaT cells. UVB radiation induced rapid ATP release from HaCaT cells; this was inhibited by pretreatment with anion transporter blockers or maxi-anion channel blockers. In addition, the radiation-induced activation of p38 MAPK was significantly blocked by pretreatment with ecto-nucleotidase (apyrase) or P2Y6 receptor antagonist (MRS2578). Expression of COX-2, mediated by activation of p38 MAPK, was also induced by UVB radiation. Both pretreatment with MRS2578 and knockdown of the P2Y6 receptor by siRNA transfection attenuated the induction of COX-2 in HaCaT cells exposed to UVB radiation. Our results indicate that UVB radiation evokes ATP release from human keratinocytes and also that activation of P2Y6 receptor mediates the UVB-radiation-induced activation of p38 MAPK and expression of COX-2. Thus P2Y6 receptor is a mediator of UVB-radiation-induced inflammatory responses in keratinocytes.  相似文献   

3.
4.
The objective of this study was to investigate the chemopreventive potentials of glycine- and proline-rich glycoprotein (SNL glycoprotein, 150-kDa) isolated from Solanum nigrum Linne on formation of colonic aberrant crypt foci (ACF) induced by 1,2-dimethylhydrazine (DMH, 20 mg/kg) in A/J mice. Administration of SNL glycoprotein inhibited phosphorylation of extracellular signal-regulated kinase (ERK), expression of colonic proliferating cell nuclear antigen (PCNA), and frequency of colonic ACF in DMH-stimulated mice colon carcinogenesis. In addition, SNL glycoprotein increased expression of cyclin-dependent kinase inhibitors (p21WAF/Cip1 and p27Kip1), whereas reduced expression of precursor form of apoptosis-related proteins [pro-caspase-3 and pro-poly(ADP-ribose)polymerase (PARP)] in the mice. Interestingly, the results in this study revealed that SNL glycoprotein has suppressive effects on activity of nuclear factor-kappa B (NF-κB), whereas it has stimulatory effect on the expression of p53, accompanying inhibitory effects on expression of NF-κBp50, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin (IL)-6, and tumor necrosis factor (TNF)-α in DMH-stimulated ACF formation. Also, SNL glycoprotein has inhibitory effects on the formation of thiobarbituric acid reactive substances (TBARS), on the production of inducible nitric oxide (NO), and on the release of lactate dehydrogenase (LDH) in the mice plasma. Collectively, our findings in this study suggest that SNL glycoprotein has chemopreventive activity via modulation of cell proliferation and apoptosis in DMH-treated A/J mice.  相似文献   

5.
6.
Monochloramine (NH2Cl) is one of the inflammation-derived oxidants, and has various effects on cell cycle, apoptosis and signal transduction. We studied the effects of NH2Cl on DNA repair response induced by ultraviolet B (UVB) irradiation in normal human diploid fibroblasts, TIG-1. TIG-1 irradiated with 20 mJ/cm2 UVB showed marked increase in thymine dimer, which decreased by about 50% after 24 h. This decrease in thymine dimer was significantly attenuated (P < 0.05) by the pretreatment of NH2Cl (200 microM), which indicated DNA repair inhibition. UVB induced p53 phosphorylation at Ser15, Ser20 and Ser37, and p53 accumulation, and NH2Cl also inhibited these changes. Consequently, UVB-induced increase in the downstream effectors of p53, namely p21Cip1 and Gadd45a, were almost completely inhibited by NH2Cl. Immunoprecipitation study indicated that the association of p53 and MDM2, an E3 ubiquitin ligase for p53, did not change substantially by NH2Cl and/or UVB. The phosphorylation of p53 (Ser15 and Ser37) by UVB is catalyzed by ATR (ataxia telangiectasia mutated and Rad3 related kinase), which works as DNA damage sensor, and ATR also phosphorylates checkpoint kinase 1(Chk1) at Ser345. NH2Cl also inhibited the phosphorylation of Chk1 (Ser345). As UVB-induced DNA damage is repaired by nucleotide excision repair (NER) in human cells, these findings indicated that NH2Cl inhibited NER through the inhibition of p53 phosphorylation and accumulation, and NH2Cl probably impaired DNA damage recognition and/or ATR activation. NH2Cl may facilitate carcinogenesis through the inhibition of NER that repairs DNA damages from various carcinogens.  相似文献   

7.
The skin is the primary target of prolonged and repeated ultraviolet (UVB) irradiation which induces cutaneous inflammation and pigmentation. Nuclear factor κB (NF-κB) is the major factor mediating UVB-induced inflammatory responses through the expression of various proinflammatory proteins such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). We have previously reported that the synthetic novel compound 4-(5-chloro-2,3-dihydrobenzo[d]thiazol-2-yl)-2,6-dimethoxyphenol (MHY884) strongly suppressed tyrosinase activity and melanin synthesis in B16F10 melanoma cells. In the present study, we investigated the effect of MHY884 on the inhibition of UVB-induced NF-κB activation and its proinflammatory downstream proteins through the suppression of oxidative stress in an in vivo model of photoaging. Generation of reactive oxygen species (ROS) and peroxynitrite was measured in vitro and in B16F10 melanoma cells to verify the scavenging activity of MHY884. MHY884 suppressed oxidative stress both in vitro and in the melanoma cells in a dose-dependent manner. Next, melanin-possessing hairless mice were pre-treated with MHY884 and then irradiated with UVB repeatedly. Topical application of MHY884 attenuated UVB-induced oxidative stress, resulting in reduced NF-κB activity. Pre-treatment with MHY884 inhibited Akt and IκB kinase α/β signaling pathways, leading to decreased translocation and phosphorylation of p65, a subunit of NF-κB. This result correlated with the expression levels of iNOS and COX-2 in the skin of MHY884-treated mice. Thus, the novel tyrosinase inhibitor MHY884 suppressed NF-κB activation signaling pathway by scavenging UVB-induced oxidative stress. The discovery of MHY884, a novel tyrosinase inhibitor that targets NF-κB signaling, is significant, because this compound is a promising protective agent against UVB-induced skin damage.  相似文献   

8.
Non-small cell lung carcinoma (NSCLC) accounts for most of all lung cancers, which is the leading cause of mortality in human beings. High level of cyclooxygenase-2 (COX-2) is one of the features of NSCLC and related to the low survival rate of NSCLC. However, whether extracellular nucleotides releasing from stressed resident tissues contributes to the expression of COX-2 remains unclear. Here, we showed that stimulation of A549 cells by adenosine 5'-O-(3-thiotriphosphate) (ATPγS) led to an increase in COX-2 gene expression and prostaglandin E(2) (PGE(2)) synthesis, revealed by Western blotting, RT-PCR, promoter assay, and enzyme-linked immunosorbent assay. In addition, ATPγS induced intracellular reactive oxygen species (ROS) generation through the activation of NADPH oxidase. The increase of ROS level resulted in activation of the c-Src/epidermal growth factor receptor (EGFR)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor (NF)-κB cascade. We also found that activated Akt was translocated into the nucleus and recruited with NF-κB and p300 to form a complex. Thus, activation of p300 modulated the acetylation of histone H4 via the NADPH oxidase/c-Src/EGFR/PI3K/Akt/NF-κB cascade stimulated by ATPγS. Our results are the first to show a novel role of NADPH oxidase-dependent Akt/p65/p300 complex formation that plays a key role in regulating COX-2/PGE(2) expression in ATPγS-treated A549 cells. Taken together, we demonstrated that ATPγS stimulated activation of NADPH oxidase, resulting in generation of ROS, which then activated the downstream c-Src/EGFR/PI3K/Akt/NF-κB/p300 cascade to regulate the expression of COX-2 and synthesis of PGE(2) in A549 cells. Understanding the regulation of COX-2 expression and PGE(2) release by ATPγS on A549 cells may provide potential therapeutic targets of NSCLC.  相似文献   

9.
Anti-inflammatory activity of Camellia japonica oil   总被引:1,自引:0,他引:1  
Kim S  Jung E  Shin S  Kim M  Kim YS  Lee J  Park D 《BMB reports》2012,45(3):177-182
Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, PGE(2), and TNF-α in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-κB promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of IκBα, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-κB and AP-1 signaling. [BMB reports 2012; 45(3): 177-182].  相似文献   

10.
11.
DNA damage responses (DDR) invoke senescence or apoptosis depending on stimulus intensity and the degree of activation of the p53-p21(Cip1/Waf1) axis; but the functional impact of NF-κB signaling on these different outcomes in normal vs. human cancer cells remains poorly understood. We investigated the NF-κB-dependent effects and mechanism underlying reactive oxygen species (ROS)-mediated DDR outcomes of normal human lung fibroblasts (HDFs) and A549 human lung cancer epithelial cells. To activate DDR, ROS accumulation was induced by different doses of H(2)O(2). The effect of ROS induction caused a G2 or G2-M phase cell cycle arrest of both human cell types. However, ROS-mediated DDR eventually culminated in different end points with HDFs undergoing premature senescence and A549 cancer cells succumbing to apoptosis. NF-κB p65/RelA nuclear translocation and Ser536 phosphorylation were induced in response to H(2)O(2)-mediated ROS accumulation. Importantly, blocking the activities of canonical NF-κB subunits with an IκBα super-repressor or suppressing canonical NF-κB signaling by IKKβ knock-down accelerated HDF premature senescence by up-regulating the p53-p21(Cip1/Waf1) axis; but inhibiting the canonical NF-κB pathway exacerbated H(2)O(2)-induced A549 cell apoptosis. HDF premature aging occurred in conjunction with γ-H2AX chromatin deposition, senescence-associated heterochromatic foci and beta-galactosidase staining. p53 knock-down abrogated H(2)O(2)-induced premature senescence of vector control- and IκBαSR-expressing HDFs functionally linking canonical NF-κB-dependent control of p53 levels to ROS-induced HDF senescence. We conclude that IKKβ-driven canonical NF-κB signaling has different functional roles for the outcome of ROS responses in the contexts of normal vs. human tumor cells by respectively protecting them against DDR-dependent premature senescence and apoptosis.  相似文献   

12.
13.
Eicosapentaenoic acid protects against UV-radiation-induced immunosuppression and photocarcinogenesis, but it is also prone to oxidative degradation, which may reduce or abolish its beneficial effects. The protective effect of topically applied vitamin E, vitamin C, or both against UVB-radiation-induced lipid peroxidation in the presence of eicosapentaenoic acid was investigated using an ex vivo pig skin model. Changes in the bioavailability of both antioxidants induced by UV radiation were studied in different skin compartments. The UVB-radiation dose used (25 kJ/m2) was similar to that required to induce immunosuppression in BALB/c mice. Exposure of pig skin with an epidermal eicosapentaenoic acid content of 1.0 +/- 0.3 mol% to UVB radiation resulted in an 85% increase of epidermal lipid peroxidation (P < 0.005). Topical application of vitamin E or vitamin C 60 min prior to UVB irradiation resulted in a major increase in both antioxidants in the stratum corneum and viable epidermis (P < 0.05). Vitamin E and vitamin C completely protected against UVB-radiation-induced lipid peroxidation (P < 0.005), but compared to vitamin E, a 500-fold higher vitamin C dose was needed. UVB irradiation induced a vitamin E consumption of up to 100% in the stratum corneum and viable epidermis, and a vitamin C consumption of only 21% in the stratum corneum. Simultaneously applied vitamin E and vitamin C also completely protected against UVB-radiation-induced lipid peroxidation (P < 0.05), and lower antioxidant doses were needed compared to vitamin E or vitamin C alone. In the presence of vitamin C, epidermal vitamin E was more stable upon UVB irradiation (P < 0.05), suggesting interaction between vitamin E and vitamin C. In conclusion, topically applied vitamin E and/or vitamin C efficiently protect against UVB-radiation-induced lipid peroxidation in the presence of eicosapentaenoic acid. The beneficial biological effects of eicosapentaenoic acid may therefore be improved if vitamin E and/or vitamin C are present in sufficient amounts. The ex vivo pig skin model provides a useful tool for assessing short-term biochemical effects related to UVB radiation, without the use of living experimental animals.  相似文献   

14.
15.
Diospyros lotus is traditionally used for the treatment of diabetes, diarrhea, tumor, and hypertension. The purpose of this study was to investigate the anti-inflammatory effect and underlying molecular mechanisms of myricetin in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Myricetin dose-dependently suppressed the production of pro-inflammatory mediators (NO, iNOS, PGE2, and COX-2) in LPS-stimulated RAW264.7 macrophages. Myricetin administration decreased the production of NO, iNOS, TNF-α, IL-6, and IL-12 in mice. Myricetin decreased NF-κB activation by suppressing the degradation of IκBα, nuclear translocation of p65 subunit of NF-κB, and NF-κB DNA binding activity in LPS-stimulated RAW264.7 macrophages. Moreover, myricetin attenuated the phosphorylation of STAT1 and the production of IFN-β in LPS-stimulated RAW264.7 macrophages. Furthermore, myricetin induced the expression of HO-1 through Nrf2 translocation. In conclusion, these results suggest that myricetin inhibits the production of pro-inflammatory mediators through the suppression of NF-κB and STAT1 activation and induction of Nrf2-mediated HO-1 expression in LPS-stimulated RAW264.7 macrophages.  相似文献   

16.
17.
18.
HSP27 is a member of the small HSP family which has been linked to different signaling pathways regulating critical cellular functions. But the role of HSP27 in LPS-induced inflammatory signaling pathways is still unclear. In the present study, both overexpression and RNA interference experiments indicated that HSP27 increased LPS-induced expression of iNOS and COX-2 and release of NO/PGE2 through enhancing NF-κB but not MAPK activation. The effects of HSP27 on LPS-induced iNOS/COX-2 expression and relative signaling cascade were closely related with the phosphorylation of HSP27. Further studies have shown that HSP27-regulated LPS-induced activation of NF-κB by interacting with TRAF6 and increasing the association of TRAF6-IKKγ. This could be a probable mechanism by which HSP27 modulates LPS-induce inflammatory signaling pathways. Thus, HSP27 may play a potential role in regulating inflammatory responses in immunologic system.  相似文献   

19.
3-Formylchromone (3-FC) has been associated with anticancer potential through a mechanism yet to be elucidated. Because of the critical role of NF-κB in tumorigenesis, we investigated the effect of this agent on the NF-κB activation pathway. Whether activated by inflammatory agents (such as TNF-α and endotoxin) or tumor promoters (such as phorbol ester and okadaic acid), 3-FC suppressed NF-κB activation. It also inhibited constitutive NF-κB expressed by most tumor cells. This activity correlated with sequential inhibition of IκBα kinase (IKK) activation, IκBα phosphorylation, IκBα degradation, p65 phosphorylation, p65 nuclear translocation, and reporter gene expression. We found that 3-FC inhibited the direct binding of p65 to DNA, and this binding was reversed by a reducing agent, thus suggesting a role for the cysteine residue. Furthermore, mutation of Cys38 to Ser in p65 abolished this effect of the chromone. This result was confirmed by a docking study. 3-FC also inhibited IKK activation directly, and the reducing agent reversed this inhibition. Furthermore, mutation of Cys179 to Ala in IKK abolished the effect of the chromone. Suppression of NF-κB activation led to inhibition of anti-apoptotic (Bcl-2, Bcl-xL, survivin, and cIAP-1), proliferative (cyclin D1 and COX-2), invasive (MMP-9 and ICAM-1), and angiogenic (VEGF) gene products and sensitization of tumor cells to cytokines. Thus, this study shows that modification of cysteine residues in IKK and p65 by 3-FC leads to inhibition of the NF-κB activation pathway, suppression of anti-apoptotic gene products, and potentiation of apoptosis in tumor cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号