首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several indicators of muscle metabolism were measured in dogs during exercise following 8 weeks of confinement in cages. Muscle tissue samples were studied at rest and following exercise for adenine nucleotides, creatine phosphate, creatine, glycogen, pyruvate, and lactate. Results indicate that confinement results in less efficient metabolic responses to exercise, decreased muscle glycogen at rest, and changes in the equilibrium between ATP breakdown and resynthesis during exercise.  相似文献   

2.
The muscle contents of high-energy phosphates and their derivatives [ATP, ADP, AMP, creatine phosphate (CrP), and creatine], glycogen, some glycolytic intermediates, pyruvate, and lactate were compared in 11 dogs performing prolonged heavy exercise until exhaustion (at ambient temperature 20.0 +/- 1.0 degrees C) without and with trunk cooling using ice packs. Without cooling, dogs were able to run for 57 +/- 8 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 +/- 0.2 and 43.0 +/- 0.2 degrees C, respectively. Compared with noncooling, duration of exercise with cooling was longer by approximately 45% while Tre and Tm at the time corresponding to the end of exercise without cooling were lower by 1.1 +/- 0.2 and 1.2 +/- 0.2 degrees C, respectively. The muscle contents of high-energy phosphates (ATP + CrP) decreased less, the rate of glycogen depletion was lower, and the increases in the contents of AMP, pyruvate, and lactate as well as in the muscle-to-blood lactate ratio were smaller. The muscle content of lactate was positively correlated with Tm. The data indicate that with higher body temperature equilibrium between high-energy phosphate breakdown and resynthesis was shifted to the lower values of ATP and CrP and glycolysis was accelerated. The results suggest that hyperthermia developing during prolonged muscular work exerts an adverse effect on muscle metabolism that may be relevant to limitation of endurance.  相似文献   

3.
This study was performed on rats with sustained (24 h) hyperadrenalinemia produced by sc implantation of retard adrenaline (A) tablets. Comparing with control, sham-operated animals, in A-treated rats duration of endurance exercise until exhaustion was shortened by approx. 40%. This was accompanied by: significant decreases of the pre-exercise muscle glycogen and creatine phosphate values in both "slow twitching" (soleus) and "fast twitching" (white portion of gastrocnemius) muscles, and of ATP content in soleus. Muscle lactate and pyruvate contents as well as blood glucose and FFA levels were elevated. After exercise muscle substrate and metabolite contents were similar in both groups in spite of the difference in exercise duration. It is concluded that prolonged hyperadrenalinemia diminishes the intramuscular energy substrate content, thereby reducing endurance capacity of rats.  相似文献   

4.
Muscle biopsies for glycogen determinations were taken from dogs before (controls) and after prolonged treatment with thyroid hormones (T4 or T3). The glycogen content in quadriceps femoris was measured before exercise, immediately after its cessation, and during 24h of post-exercise recovery. The effect of thyroxine treatment on the liver glycogen content both at rest and following physical effort was also studied. A marked decrease in the muscle glycogen content determined at rest was found both in T4 and T3-treated dogs in comparison with controls. Physical exercise diminished the muscle glycogen store to similar values in control and thyroid hormone-treated dogs, but the rate of the muscle glycogen utilization during exercise was lower in the latter. The rate of the post-exercise muscle glycogen synthesis was considerably inhibited in thyroid hormone-treated dogs, but 1 hr glucose infusion, applied immediately after cessation of exercise, accelerated the rate of glycogen re-synthesis, so it was close to that in controls without infusion. Thyroxine treatment also affected the liver glycogen store. Both at rest and after physical exercise significantly lower liver glycogen contents were found in T4-treated dogs than in controls.  相似文献   

5.
Muscle biopsies taken from the musculus quadriceps femoris of man were analysed for pH, ATP, ADP, AMP, creatine phosphate, creatine, lactate and pyruvate. Biopsies were taken at rest, after circulatory occlusion and after isometric contraction. Muscle pH decreased from 7.09 at rest to 6.56 after isometric exercise to fatigue. Decrease in muscle pH was linearly related to accumulation of lactate plus pyruvate. An increase of 22mumol of lactate plus pyruvate per g of muscle resulted in a fall of 0.5pH unit. The apparent equilibrium constant of the creatine kinase reaction (apparent K(CK)) increased after isometric contraction and a linear relationship between log(apparent K(CK)) and muscle pH was obtained. The low content of creatine phosphate in muscle after contraction as analysed from needle-biopsy samples is believed to be a consequence of an altered equilibrium state of the creatine kinase reaction. This in turn is attributed mainly to a change in intracellular pH.  相似文献   

6.
In order to provide reference data, adenine nucleotide, creatine phosphate, glycogen, glycolytic intermediates and lactate muscle contents were measured in 49 dogs under resting conditions and during prolonged physical exercise of moderate intensity performed until exhaustion. Both the resting and exercise values of the measured variables were remarkably similar to those described in human subjects, except muscle lactate content which achieved higher values during submaximal exercise in dogs than in men.  相似文献   

7.
1. The effects of hypothyroidism (caused by surgical thyroidectomy followed by treatment for 1 month with propylthiouracil) and of hyperthyroidism [induced by subcutaneous administration of L-tri-iodothyronine (T3)] on glucose tolerance and skeletal-muscle sensitivity to insulin were examined in rats. Glucose tolerance was estimated during 2 h after subcutaneous glucose injection (1 g/kg body wt.). The sensitivity of the soleus muscle to insulin was studied in vitro in sedentary and acutely exercised animals. 2. Glucose tolerance was impaired in both hypothyroid and hyperthyroid rats in comparison with euthyroid controls. 3. In the soleus muscle, responsiveness of the rate of lactate formation to insulin was abolished in hypothyroid rats, whereas the sensitivity of the rate of glycogen synthesis to insulin was unchanged. In hyperthyroid animals, opposite changes were found, i.e. responsiveness of the rate of glycogen synthesis was inhibited and the sensitivity of the rate of lactate production did not differ from that in control sedentary rats. 4. A single bout of exercise for 30 min potentiated the stimulatory effect of insulin on lactate formation in hyperthyroid rats and on glycogen synthesis in hypothyroid animals. 5. The data suggest that thyroid hormones exert an interactive effect with insulin in skeletal muscle. This is likely to be at the post-receptor level, inhibiting the effect of insulin on glycogen synthesis and stimulating oxidative glucose utilization.  相似文献   

8.
The metabolism of lactate, pyruvate and glucose was studied in epididymal adipose tissue of starved, normally fed and starved-re-fed rats. Lactate conversion into fatty acid occurred at an appreciable rate only in the adipocyte of starved-re-fed animals. NNN'N'-Tetramethyl-p-phenylenediamine, an agent that transports reducing power from the cytoplasm to the mitochondria, caused large increments of fatty acid synthesis from lactate and a smaller one from glucose but a decrease in that from pyruvate. Glucose (1.0mm) increased fatty acid synthesis from lactate 4.3-fold but only 1.67-fold from pyruvate in adipocytes from normally fed animals. 2-Deoxyglucose decreased fatty acid synthesis from lactate to a greater degree (threefold) compared to that from pyruvate in adipocytes from starved-re-fed animals. l-Glycerol 3-phosphate contents were approximately equal in epididymal fat-pads, incubated in the presence of lactate or pyruvate, from normally fed animals, whereas the addition of 1mm-glucose resulted in a tenfold increase in l-glycerol 3-phosphate content only in the presence of lactate. The l-glycerol 3-phosphate content was tenfold higher in adipose tissue from starved-re-fed animals incubated in the presence of lactate than in the presence of pyruvate. 2-Deoxyglucose caused these values to be slightly lowered in the presence of lactate. We suggest that lactate metabolism is limited by the rate of NADH removal from the cytoplasm. In the starved-re-fed state, this occurs by reduction of dihydroxyacetone phosphate formed from glycogen to produce l-glycerol 3-phosphate, thus permitting lactate conversion into fatty acid. When glucose is the substrate, and rates of transport are not limiting, the rate of removal of cytoplasmic NADH limits glucose conversion into fatty acid.  相似文献   

9.
The objective of this study was to examine the muscle metabolic changes occurring during intense and prolonged, heavy-resistance exercise. Muscle biopsies were obtained from the vastus lateralis of 9 strength trained athletes before and 30 s after an exercise regimen comprising 5 sets each of front squats, back squats, leg presses and knee extensions using barbell or variable resistance machines. Each set was executed until muscle failure, which occurred within 6-12 muscle contractions. The exercise: rest ratio was approximately 1:2 and the total performance time was 30 min. Concentrations of adenosine triphosphate (ATP), creatine phosphate (CP), creatine, glycogen, glucose, glucose-6-phosphate (G-6-P), alpha-glycerophosphate (alpha-G-P) and lactate were determined on freeze-dried tissue samples using fluorometric assays. Blood samples were analyzed for lactate and glucose. The exercise produced significant reductions in ATP (p less than 0.01) and CP (p less than 0.001), while alpha-G-P more than doubled (p less than 0.05), glucose increased tenfold (p less than 0.001) and G-6-P fourfold (p less than 0.001). Muscle lactate concentration at cessation of exercise averaged 17.3 mmol X kg-1 w. w. Glycogen concentration decreased (p less than 0.001) from 160 to 118 mmol X kg-1 w. w. It is concluded that high intensity, heavy resistance exercise is associated with a high rate of energy utilization through phosphagen breakdown and activation of glycogenolysis.  相似文献   

10.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

11.
A study was made of brain nucleotides and glycolytic intermediates in paradoxical sleep (PS)-deprived and recovery-sleeping rats. It was observed that PS deprivation of 24 h produced a fall in glucose, glucose 6-phosphate and pyruvate in cerebral frontal lobes. After three hours of recovery sleep all values returned toward their predeprivational levels. In cerebellar hemispheres ATP was increased, while glucose 6-phosphate and pyruvate were decreased. After three hours of recovery sleep, glucose 6-phosphate was increased and pyruvate decreased, indicating restoration of glycogen and creatine phosphate respectively.  相似文献   

12.
The concentrations of following metabolites were determined in freeze-clamped gastrocnemius muscle samples: glucose 1-phosphate, glucose 6-phosphate, glucose, fructose 1,6-diphosphate, fructose 6-phosphate, D-glyceraldehyde 3-phosphate. dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, glycerol 3-phosphate, glycerol, creatine phosphate, creatine, glycerate 3-phosphate, glycerate 2-phosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, inorganic phosphate. The results showed that within the limits of experimental error, concentration homeostasis for this metabolites is founded at least in some cases on equilibria between enzymic transformations. Discrepancies between constant mass ratios measured in this study and equilibrium constants allow the free energy variation delta G to keep creatine phosphate at high concentration to be calculated. For the phosphoglycerate mutase system, the equilibrium constant in controls and trained animals is unchanged and corresponds to that in vitro. Training hindered glycolysis and favoured phosphorylation of creatine by glycerol 3-phosphate. Metabolites of the pyruvate kinase and hexokinase system cannot be homogeneously distributed in one space. The creatine kinase system is also separated from the hexokinase und pyruvate kinase system. A compartition of glycolytic process in gastrocnemius muscle seems to be inferred from these results.  相似文献   

13.
Muscle power and metabolism in maximal intermittent exercise   总被引:4,自引:0,他引:4  
Muscle power and the associated metabolic changes in muscle were investigated in eight male human subjects who performed four 30-s bouts of maximal isokinetic cycling at 100 rpm, with 4-min recovery intervals. In the first bout peak power and total work were (mean +/- SE) 1,626 +/- 102 W and 20.83 +/- 1.18 kJ, respectively; muscle glycogen decreased by 18.2 mmol/kg wet wt, lactate increased to 28.9 +/- 2.7 mmol/kg, and there were up to 10-fold increases in glycolytic intermediates. External power and work decreased by 20% in both the second and third exercise periods, but no further change occurred in the fourth bout. Muscle glycogen decreased by an additional 14.8 mmol/kg after the second exercise and thereafter remained constant. Muscle adenosine triphosphate (ATP) was reduced by 40% from resting after each exercise period; creatine phosphate (CP) decreased successively to less than 5% of resting; in the recovery periods ATP and CP increased to 76 and 95% of initial resting levels, respectively. Venous plasma glycerol increased linearly to 485% of resting; free fatty acids did not change. Changes in muscle glycogen, lactate, and glycolytic intermediates suggested rate limitation at phosphofructokinase during the first and second exercise periods, and phosphorylase in the third and fourth exercise periods. Despite minimal glycolytic flux in the third and fourth exercise periods, subjects generated 1,000 W peak power and sustained 400 W for 30 s, 60% of the values recorded in the first exercise period.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
1. Ox sternomandibularis muscle was ;slow-frozen' by placing it in air at -22 degrees or ;fast-frozen' by immersion in liquid air or acetone-solid carbon dioxide. In all cases muscles were frozen pre-rigor. Changes in length, pH and the concentrations of P(i), creatine phosphate, hexose monophosphate (glucose 1-phosphate+glucose 6-phosphate+fructose 6-phosphate), fructose diphosphate (fructose 1,6-diphosphate+(1/2) triose phosphate), lactate, ATP, ADP, AMP and NAD(+) during freezing and during subsequent thawing were determined. In addition some measurements were made of the changes in alpha-glycerophosphate, 3-phosphoglycerate, 2-phosphoglycerate, phosphoenolpyruvate and pyruvate concentrations during slow freezing. 2. Appreciable shortening and marked changes in chemical composition took place during slow freezing but not during fast freezing. 3. During slow freezing the hexose monophosphate concentration fell and fructose 1,6-diphosphate and triose phosphate increased substantially. Increases also took place in 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate, but not in pyruvate. 4. On thawing, most of the chemical changes were similar to those in unfrozen muscle post mortem, but took place much more rapidly; loss of NAD(+) was particularly rapid. Fast-frozen muscle metabolized at a faster rate on thawing than did slow-frozen muscle. 5. The overall changes in length during freezing and thawing were about the same in slow-frozen as in fast-frozen muscle.  相似文献   

15.
Glucose metabolites (lactate, pyruvate, citrate, malate), alanine, glutamate and adenosine triphosphate (ATP) were determined in the resting anterior tibial muscle of dogs. The muscle was sampled in anesthetized animals first breathing air, and secondly after an hour of breathing a hypercapnic mixture, FICO2 = 0.10 (experimental subjects n = 6) or air (control subjects n = 6). A decrease in concentration of glucose metabolites (lactate: -34%; pyruvate: -24%; Citrate: -34%; malate: -54%), glutamate (-43%), alanine (-35%) and ATP (-8%) was observed in the resting muscle during acute hypercapnic acidosis. This was not the case in control animals breathing air.  相似文献   

16.
Summary Time course measurements of glycogen, lactate, creatine phosphate, the adenylates and ammonia contents were made during the transition from rest to various levels of activity in fish (Macrozoarces americanus) white muscle. The muscle was perturbed by direct electrical stimulation resulting in sustained tetanus, 60 contractions/min or 20 contractions/min. Increased ATP demand was invariably associated with decreases in creatine phosphate followed by increases in lactate levels. The contribution of creatine phosphate to anaerobic energy production was equivalent to that of anaerobic glycolysis. In addition, decreases in creatine phosphate content may play an important role in the facilitation of glycolytic flux presumably by relief of inhibition of phosphofructokinase. Under some conditions the work transition was associated with an initial transient increase in ATP content which could not be accounted for by decreases in ADP and AMP levels. Furthermore, ammonia content was noted to oscillate during the work period, a feature which is fundamentally different from that which occurs in mammalian muscle.  相似文献   

17.
1. The work investigated hepatic glycogen synthesis and glucose output after the intragastric administration of glucose or glycerol or the provision of chow ad libitum to 48 h-starved euthyroid or hyperthyroid rats. 2. After glucose administration, glycogen synthesis via the indirect pathway [Newgard, Hirsch, Foster & McGarry (1983) J. Biol. Chem. 258, 8046-8052] occurred concomitantly with reversal of glucose flux across the liver and re-activation of pyruvate kinase in the euthyroid controls. Glycogen synthesis was decreased and net glucose output continued in the hyperthyroid rats, but normal re-activation of pyruvate kinase was observed. 3. Use of 3-mercaptopicolinate indicated that the glucose released from liver of hyperthyroid rats was synthesized from substrates metabolized via the gluconeogenic pathway. 4. Hepatic glycogen synthesis was also impaired in hyperthyroid rats after administration of glycerol or chow. Measurement of portal-minus-hepatovenous concentration differences and arterial glucose concentrations after the administration of glycerol in combination with 3-mercaptopicolinate indicated that flux from triose phosphate to glucose 6-phosphate was not decreased. 5. Inhibited glycogen synthesis after chow re-feeding was associated with accelerated re-activation of hepatic pyruvate dehydrogenase complex in the hyperthyroid rats. 6. The results indicate three distinct and independent actions of hyperthyroidism after re-feeding: (i) it inhibits the reversal of glucose flux across the liver normally observed in response to carbohydrate; (ii) it affects glycogen deposition at a site distal to glucose 6-phosphate; (iii) it allows more rapid re-activation of liver pyruvate dehydrogenase complex in response to a mixed diet.  相似文献   

18.
Postmortem biochemical changes were examined in the mantle muscle of the short-finned squid (Illex illecebrosus) in relation to the physical events associated with rigor. Unlike mammalian muscle, the major muscle phosphagen is arginine phosphate rather than creatine phosphate. Arginine phosphate levels did not change dramatically during the progress of rigor development. ATP depletion was found to be closely related to glycogen depletion as is often observed in mammalian muscle. The postmortem accumulation of octopine was related to the initial muscle glycogen content at death but a significant lag in its production was observed. The postmortem conversion of glucose to glucose-6-phosphate appeared to be the rate-limiting step in the overall conversion of glycogen to octopine. The intermediates found in the postmortem catabolism of squid muscle ATP were ADP, AMP, IMP Ino and Hx. Unlike most vertebrate fishes, AMP was found to accumulate in squid before conversion to IMP whereas accumulations of IMP and Ino were less than those normally found in vertebrate muscle.  相似文献   

19.
The effect of thyroid hormone (T(3)) on the content of myocardial creatine (Cr), Cr phosphate (CrP), and high-energy adenine nucleotides and on cardiac function was examined. In the hearts of control and T(3)-treated rats perfused in vitro, while "low" and "high" contractile work was performed, T(3) treatment resulted in a approximately 50% reduction in CrP, Cr, total Cr content (Cr + CrP), and in the CrP-to-Cr ratio. In addition, there was a slight fall in myocardial content of ATP and a large rise in calculated free ADP (fADP), resulting in a significant decrease in the ATP-to-fADP ratio in the hearts of hyperthyroid compared with euthyroid rats. Moreover, there was a substantial decrease in the level of ATP in hearts of T(3)-treated rats under high work conditions. Importantly, the ratio of cardiac work to oxygen consumption was not altered by thyroid status. Treatment with T(3) also resulted in an almost threefold reduction in the content of Na(+)/Cr transporter mRNA in the ventricular myocardium and skeletal muscle but not in the brain. We conclude with the following: 1) changes in the expression of the Na(+)/Cr transporter mRNA correlate with Cr + CrP in the myocardium; 2) hearts of hyperthyroid rats contain lower levels of ATP and higher levels of fADP under both low and high work conditions but no reduction in efficiency of work output; and 3) the reduction in Cr and ATP in hearts of hyperthyroid rats may be the basis for the reduced maximal work capacity of the hyperthyroid heart.  相似文献   

20.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号