首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male fiddler crabs are commonly recognized by the presence of a single massive claw used in a variety of contexts, including territorial defence, agonistic interactions, and courtship behaviour. The most common behavioural context involving these enlarged chelipeds is their use in waving displays, which are remarkably diverse among species. Although the waving display is one of the most obvious behavioural features of male fiddler crabs, little is known about their main evolutionary trends during the diversification of the genus. The present study employed phylogenetic comparative methods to investigate the evolution of waving behaviour in a sample of 19 species of Uca from Central and North America. Digital recordings were used to quantify the temporal dynamics of waving behaviour in each species. Multivariate ordination methods were used to assess whether different elements of the display showed distinct evolutionary dynamics, particularly with respect to body size and the environment where species are most commonly found. Most of the interspecific variation in displays involves differences in the overall waving velocity, with no correspondence to their local environments, nor their body size. Interestingly, despite the strong concentration of variance in the first two ordination axes, there was no statistically significant evidence for phylogenetic signals in their respective scores. These results suggest that the overall structure of waving displays is evolutionarily labile, at the same time as being concentrated in a few particular axes of variation, possibly indicating evolution along lines of least resistance. The approach employed in the present study highlights the utility of phylogenetic comparative methods for elucidating the evolution of complex behavioural characteristics, such as the waving display in male fiddler crabs. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 307–315.  相似文献   

2.
Water mites of the genus Arrenurus vary in male sexual dimorphism and in sperm transfer behaviour. Although it is a very large genus (≈800 spp.), mating behaviour has been described for only a few species. Here sperm transfer behaviour is described for the first time in a North American species, Arrenurus manubriator. Behaviour patterns can be divided into pre-pairing (readiness posture and cauda presentation), pre-deposition (high vertical jerking, low vertical shaking, striking/stroking and slow lateral waving), spermatophore deposition, sperm translocation, post-deposition (striking/stroking. slow lateral waving, 'tick-rock', shuttling, violent shaking), and separation. Males deposited 8–21 spermatophores in a mating. Pairs remained together for up to 31/2h. Possible adaptive functions of male courtship behaviour are discussed, including the hypothesis that male intromittant organs evolved in Arrenurus to circumvent female choice.  相似文献   

3.
Multiple signals that convey different messages have been reported in many taxa, but relatively few studies have been made on such signals in invertebrates. In the present study, I investigated four types of claw‐waving display used in the fiddler crab Uca lactea to test whether the displays have different functions. Three males with a sand structure beside their burrows (which can attract females) and three males without a sand structure were fenced in an opaque enclosure, and I videotaped their waving displays after releasing two burrowless males or two burrowless females to test the effects of audiences. (a) Lateral‐circular waving tended to occur in enclosures with burrowless females and was performed frequently by males that had sand structures. (b) Lateral‐flick waving was performed frequently by males without sand structures, and its frequency was positively correlated with the signaler’s body size. (c) Rapid‐vertical waving was observed frequently in enclosures with burrowless males, and its frequency was negatively correlated with the signaler’s body size. (d) Circular waving tended to occur in enclosures with burrowless females and was performed frequently by males that had sand structures, and its frequency was positively correlated with the signaler’s body size. In my previous study, lateral‐circular waving was often seen in the breeding season and was mostly performed to female audiences, lateral‐flick waving was frequently performed to neighboring resident males, rapid‐vertical waving was performed mainly to intruding burrowless males, and circular waving did not have apparent audiences in most cases. Finally, I concluded that lateral‐circular waving was used as a courtship display, lateral‐flick waving was related to border disputes, rapid‐vertical waving was used for burrow guarding, and circular waving was used to broadcast the signaler’s general quality.  相似文献   

4.
The evolution of body size, the paired phenomena of giantism and dwarfism, has long been studied by biologists and paleontologists. However, detailed investigations devoted to the study of the evolution of ontogenetic patterns shaping giant species are scarce. The damselfishes of the genus Dascyllus appear as an excellent model for such a study. Their well understood phylogeny reveals that large‐bodied species have evolved in two different clades. Geometric morphometric methods were used to compare the ontogenetic trajectories of the neurocranium and the mandible in both small‐bodied (Dascyllus aruanus and Dascyllus carneus; maximum size: 50–65 mm standard length) and giant (Dascyllus trimaculatus and Dascyllus flavicaudus; maximum size: 90–110 mm standard length) Dascyllus species. At their respective maximum body size, the neurocranium of the giant species is significantly shorter and have a higher supraoccipital crest relative to the small‐bodied species, whereas mandible shape variation is more limited and is not related to the ‘giant’ trait. The hypothesis of ontogenetic scaling whereby the giant species evolved by extending the allometric trajectory of the small‐bodied ones (i.e. hypermorphosis) is rejected. Instead, the allometric trajectories vary among species by lateral transpositions. The rate of shape changes and the type of lateral transposition also differ according to the skeletal unit among Dascyllus species. Differences seen between the two giant species in the present study demonstrate that giant species may appear by varied alterations of the ancestor allometric pattern. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 99–117.  相似文献   

5.
A new species of Cephalocarida belonging to the genus Lightiella is described. Like all known species of Lightiella , the new species is characterized by reduction of trunk segment 8, which also lacks both pleura and thoracopods. The diagnostic characters of the species are: (1) one seta on the inner distal corner of the penultimate endopodal segment of second maxilla and thoracopods 1–5; (2) only one claw on the distal segment of the endopod of thoracopod 6. A cladistic analysis of 27 morphological characters was used to estimate the phylogeny of all species of Lightiella , with all other cephalocarid species used as outgroups. The discovery of this species in the Mediterranean fills a gap in the distribution of the genus and of the entire class.  © 2006 The Linnean Society of London, Zoological Journal of the Linnean Society , 2006, 148 , 209–220.  相似文献   

6.
7.
Stingless bees (Meliponini) are one of only two highly eusocial bees, the other being the well studied honey bee (Apini). Unlike Apini, with only 11 species in the single genus Apis, stingless bees are a large and diverse taxon comprising some 60 genera, many of which are poorly known. This is the first attempt to infer a phylogeny of the group that includes the world fauna and extensive molecular data. Understanding the evolutionary relationships of these bees would provide a basis for behavioural studies within an evolutionary framework, illuminating the origins of complex social behaviour, such as the employment of dance and sound to communicate the location of food or shelter. In addition to a global phylogeny, we also provide estimates of divergence times and ancestral biogeograhic distributions of the major groups. Bayesian and maximum likelihood analyses strongly support a principal division of Meliponini into Old and New World groups, with the Afrotropical+Indo‐Malay/Australian clades comprising the sister group to the large Neotropical clade. The meliponine crown clade is inferred to be of late Gondwanan origin (approximately 80 Mya), undergoing radiations in the Afrotropical and Indo‐Malayan/Australasian regions, approximately 50–60 Mya. In the New World, major diversifications occurred approximately 30–40 Mya. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 206–232.  相似文献   

8.
Pedal claw geometry can be used to predict behaviour in extant tetrapods and has frequently been used as an indicator of lifestyle and ecology in Mesozoic birds and other fossil reptiles, sometimes without acknowledgement of the caveat that data from other aspects of morphology and proportions also need to be considered. Variation in styles of measurement (both inner and outer claw curvature angles) has made it difficult to compare results across studies, as have over-simplified ecological categories. We sought to increase sample size in a new analysis devised to test claw geometry against ecological niche. We found that taxa from different behavioural categories overlapped extensively in claw geometry. Whilst most taxa plotted as predicted, some fossil taxa were recovered in unexpected positions. Inner and outer claw curvatures were statistically correlated, and both correlated with relative claw robusticity (mid-point claw height). We corrected for mass and phylogeny, as both likely influence claw morphology. We conclude that there is no strong mass-specific effect on claw curvature; furthermore, correlations between claw geometry and behaviour are consistent across disparate clades. By using independent contrasts to correct for phylogeny, we found little significant relationship between claw geometry and behaviour. ‘Ground-dweller’ claws are less curved and relatively dorsoventrally deep relative to those of other behavioural categories; beyond this it is difficult to assign an explicit category to a claw based purely on geometry.  相似文献   

9.
Some animals are known to use several different signals which convey different messages. In the fiddler crab, Uca lactea, I found that males performed at least four types of claw-waving display: lateral-circular, lateral-flick, rapid-vertical, and circular waving. The major audiences and the seasonal occurrence patterns of the displays differed among waving types. Lateral-circular waving (combinations of slow lateral extension, quick flexion, and circumduction of the major claw) was mostly performed to female audiences and was observed frequently in the breeding season. Lateral-flick waving (quick lateral abduction to the audience) was frequently performed to neighbor residents but rarely performed to females in the breeding season. Rapid vertical waving (rapid dorso-ventral protraction and retraction) was observed throughout the observation period and was most frequently performed to burrowless males. Circular waving (simple circumduction) was frequently observed prior to the breeding season and had no obvious audience in most cases. The results showed that males performed different types of claw-waving in different contexts. Males may have needed to use several different types of waving in order to transmit different messages. Digital video images relating to this article are available at , , , .  相似文献   

10.
The lizards of the Egernia group of Australia and Melanesia include some of the most distinctive members of the family Scincidae in morphology (including giant size, spinose scalation), ecology and behaviour. Social behaviour, including long‐term recognition of individuals and kin, mate fidelity and home site fidelity, is amongst the most complex known in squamate reptiles and is the subject of an expanding number of studies. Lack of a sound phylogeny for the Egernia group has limited our ability to understand the evolution and patterns of variation in social behaviour within this group, and evidence for the monophyly of the largest genus, Egernia (64% of the species), has been lacking. We present data derived from nucleotide sequences that establish a phylogenetic framework for the Egernia group. We used two mitochondrial sequences, the protein‐encoding ND4 gene and a ribosomal gene, 12s rRNA, and two nuclear sequences, the protein‐encoding c‐mos, and non‐encoding intron 7 of β‐fibrinogen. Our phylogenetic analyses show that Corucia of the Solomon Islands is the sister group of the rest of the Egernia group. The genus Egernia is paraphyletic, including four well‐supported monophyletic units, one of which is the sister lineage of the Tiliqua lineage (Tiliqua plus Cyclodomorphus). We suggest a revised taxonomic scheme that recognizes the major monophyletic lineages in Egernia (s.l.) as distinct genera. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 781–794.  相似文献   

11.
The systematics of the order Tubulidentata is poorly known. Its phylogeny has never been thoroughly analysed and only a single review has ever been performed, which was over 30 years ago. This situation has hampered palaeoecological and palaeobiogeographical studies of these Neogene mammals. The present revision of the Orycteropodidae deals with the phylogeny and systematics of all African and Eurasian species over the last 20 Myr. The first comprehensive cladistic analysis of the family is presented here. The results of this analysis, based on 39 coded morphological characters, supplemented by non‐coded features taken from all over the skeleton, was used to reconstruct the phylogeny of the order Tubulidentata. Two distinct lineages within the genus Orycteropus are recognized and characterized. The new genus Amphiorycteropus is subsequently created, in order to harmonize taxonomy and phylogeny. The fossil genera Leptorycteropus and Myorycteropus are validated, bringing the number of genera in the order Tubulidentata to four. Moreover, within the family Orycteropodidae, the number of confirmed species is now 14. The outcome of this study allows us to propose a consistent palaeobiogeographical scenario for aardvarks. Finally, this revision represents the most comprehensive work on the evolutionary history of the order Tubulidentata to date, and provides a new framework for future studies. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 649–702.  相似文献   

12.
A morphological data set for the histerid beetle subfamily Saprininae comprising 95 adult morphological characters scored (multistate coding) from 72 terminal taxa and four outgroups was developed in order to analyse and determine the relationships amongst the genera and subgenera of the Saprininae subfamily. Cladograms were rooted with exemplars of Dendrophilinae (genus Dendrophilus), Bacaniini (genus Bacanius), Abraeinae (genus Chaetabraeus), and Anapleini (genus Anapleus). Parsimony‐based phylogenetic analyses were performed based on the type species of each genus and subgenus of the Saprininae occurring around the world, with the exception of three taxa: Paramyrmetes foveipennis (type species of the genus Paramyrmetes), Satrapister nitens (type species of the genus Satrapister) and Xerosaprinus (Auchmosaprinus) laciniatus (type species of the subgenus Auchmosaprinus) that were not available. In addition, in order to test the monophyly of several questionable genera, multiple exemplars were added in a few cases. The analysis also included an exemplar of an apparently undescribed genus. The results of the analysis confirm the monophyly of the subfamily supported by two unique synapomorphies: (1) presence of sensory structures of the antenna; and (2) presence of the antennal cavity, as well as several other weaker synapomorphies. However, the phylogeny inferred here shows mostly low support for the deeper branches and consequently no major changes in the Saprininae classification are proposed. The presented cladogram is discussed together with its implications for the evolution of the subfamily. The most informative characters and their respective states are outlined. Multiple shifts in lifestyles have evolved during the evolutionary history of the group. Taxa found near the root of the cladogram are mostly nidicolous or myrmecophilous, and inquiliny is presumed to be the plesiomorphic lifestyle of the subfamily. The nidicolous lifestyle has undergone several transformations to other lifestyles and myrmecophily has evolved three times independently during the evolution of the subfamily. Termitoxeny has evolved two times independently in the group whereas ecological adaptation for life in caves has likewise evolved two times independently. The analyses yielded a large clade of predominantly psammophilous taxa; psammophily is thought to have evolved once and has been subsequently lost several times. © 2014 The Linnean Society of London  相似文献   

13.
The ‘Mimic Octopus’Thaumoctopus mimicus Norman & Hochberg, 2005 exhibits a conspicuous primary defence mechanism (high‐contrast colour pattern during ‘flatfish swimming’) that may involve facultative imperfect mimicry of conspicuous and/or inconspicuous models, both toxic and non‐toxic (Soleidae and Bothidae). Here, we examine relationships between behavioural and morphological elements of conspicuous flatfish swimming in extant octopodids (Cephalopoda: Octopodidae), and reconstructed ancestral states, to examine potential influences on the evolution of this rare defence mechanism. We address the order of trait distribution to explore whether conspicuous flatfish swimming may be an exaptation that usurps a previously evolved form of locomotion for a new purpose. Contrary to our predictions, based on the relationships we examined, flatfish swimming appears to have evolved concurrently with extremely long arms, in a clade of sand‐dwelling species. The conspicuous body colour pattern displayed by swimming T. mimicus may represent a secondary adaptation potentially allowing for mimicry of a toxic sole, improved disruptive coloration, and/or aposematic coloration. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 68–77.  相似文献   

14.
The phylogeny of the paper wasp genus Polistes is investigated using morphological and behavioural characters, as well as molecular data from six genes (COI, 12S, 16S, 28S, H3, and EF1‐α). The results are used to investigate the following evolutionary hypotheses about the genus: (i) that Polistes first evolved in Southeast Asia, (ii) that dispersal to the New World occurred only once, and (iii) that long‐term monogyny evolved as an adaptation to overwintering in a temperate climate. Optimization of distribution records on the recovered tree does not allow unambiguous reconstruction of the ancestral area of Polistes. While the results indicate that Polistes dispersed into the New World from Asia, South America is recovered as the ancestral area for all New World Polistes: Nearctic species groups evolved multiple times from this South American stock. The final tree topology suggests strongly that the genus first arose in a tropical environment, refuting the idea of monogyny as an overwintering adaptation.  相似文献   

15.
Leafhoppers from 16 New World genera currently placed in the tribes Proconiini (13) and Cicadellini (2) of the subfamily Cicadellinae, in the subfamily Phereurhininae (1), and one undescribed genus exhibit a suite of morphological specializations associated with a unique type of maternal care. The females produce a specific type of brochosomes (secretory particles manufactured in the Malpighian tubules of most leafhoppers and usually forming a non‐sex‐specific hydrophobic coating of the integument), which they store prior to oviposition on their forewings in the form of pellets and then apply as a powdery coating to the egg clusters placed under the epidermis of leaves or, in one genus, exposed. The function of the brochosome coating is unknown, but may include protection of eggs against parasitoids and pathogens, and facilitating gas exchange. Observations on several species from the genera Phera, Homalodisca, Oncometopia, Quichira, Cuerna, and the undescribed genus are reported, complementing scanty existing data on this behaviour. Its taxonomic occurrence is described for the first time based on study of collections, where ready‐to‐oviposit females are occasionally preserved with pellets of brochosomes on their forewings. A comprehensive survey of associated female‐specific structural modifications is presented based on examination of c. 80 predominantly Neotropical species. These modifications include (1) production of modified brochosomes (2) modified setation of the forewing area upon which pellets of such brochosomes are placed, and (3) elongation of the metathoracic tibial macrosetae, which transfer the brochosomes onto the egg nest. The traits are absent or rudimentary in males. The specialized brochosomes display remarkable interspecific diversity and can be used for taxonomic identification of eggs. Egg‐powdering apparently has evolved as a modification of the anointing and grooming behaviours involved in making coatings of integumental brochosomes in most leafhoppers. Morphological similarity, extending to characters not related to oviposition, suggests that all genera containing ‘powdering’ species may form a single lineage, but this hypothesis yet needs to be tested by phylogenetic analyses. Several such genera include species displaying powdering‐associated traits and species lacking these, suggesting multiple independent losses or origins of powdering. This peculiar kind of maternal care provides an interesting model for study of the evolution of novel functional complexes of traits. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 140 , 353–381.  相似文献   

16.
Batesian mimicry, in which a palatable organism resembles an unpalatable model, is widespread among taxa. Batesian mimics can be classified based on their level of accuracy (inaccurate or accurate). Using data on defensive strategies in more than 1000 species of spiders I investigated whether inaccurate myrmecomorphy is ancestral to accurate myrmecomorphy. I classified 233 myrmecomorphic species into four accuracy levels based on morphology, from poor inaccurate mimics to very accurate ones. I found that myrmecomorphy has evolved independently in 16 families and 85 genera. On the family‐level phylogeny, the occurrence of myrmecomorphy is confined mainly to families branching later on the tree, from the RTA clade. On the generic‐level phylogenies in Corinnidae and Salticidae, myrmecomorphy is not only of derived origin. Estimated ancestral state was non‐mimetic in Salticidae and poor inaccurate myrmecomorphy in Corinnidae. Thus, inaccurate myrmecomorphic spider mimics seem rather ancestral to accurate but additional analysis on species‐level phylogenies is needed to support this conclusion. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 97–111.  相似文献   

17.
Orb‐weaving spiders are good objects for evolutionary research, but phylogenetic relationships among and within orb‐weaving lineages are poorly understood. Here we present the first species‐level molecular phylogeny that includes the enigmatic orb weavers ‘Zygiellidae’ and Caerostris. Zygiellidae is interesting for the evolution of the sector web, and Caerostris is noteworthy for web gigantism and extraordinary silk biomechanics. We assembled a molecular data set using mitochondrial (COI, 16S) and nuclear (H3, 18S, 28S, ITS2) gene fragments for 112 orbicularian exemplars, focusing on taxa with diverse web architecture and size. We show that ‘Zygiellidae’ contains the Holarctic Zygiella genus group (Leviellus, Parazygiella, Stroemiellus, and Zygiella) and the Australasian Phonognatha and Deliochus. As this clade is placed with Araneidae in all analyses we treat it as a subfamily, Zygiellinae. Using the new phylogeny, we show that the sector web evolved eight times, and coevolved with the silk tube retreat, but that these features are not zygielline synapomorphies. Zygiellinae, Caerostris, and some other araneids form a basal grade of araneids that differ from ‘classical’ araneids in web‐building and preying behaviour. We also confirm that Caerostris represents the most striking case of spider‐web gigantism. © 2015 The Linnean Society of London  相似文献   

18.
Some aspects of the natural history of snakes of the colubrid genus Natrix have been well studied. With their extensive European distribution and relative abundance, their ecology, reproduction and behaviour are well known. Yet other facets of their biology remain poorly understood. These include knowledge of Natrix phylogeny, hypotheses explaining the current distribution of the three extant members of the genus, and their evolution and relationships. In this study we used molecular data, the nucleotide sequences of four protein-coding mitochondrial genes (3806 bp total), to provide a well-supported phylogeny for the genus Natrix . With these molecular data, evidence from the fossil record, and knowledge of palaeogeological events, we used two approaches in designing a time scale which we used to date the major events in Natrix speciation and intraspecific variation. Our data strongly support a phylogeny for the genus in which N. maura is basal with N. natrix and N. tessellata being sister species. The calibrated molecular clock suggests that N. maura diverged from the common ancestor of the three species 18–27 mya and that N. natrix and N. tessellata diverged 13–22 mya. Although the ranges of these estimates are large they support an early Miocene to late Oligocene origin for the three species. Intraspecific divergence is estimated to have commenced 5.3, 6.0 and 6.7 mya with evolutionary rates of 1 : 1.25 : 1.35% per million years for N. maura, N. natrix and N. tessellata , respectively.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 127–143.  相似文献   

19.
The capacity to consume large prey evolved long ago in snakes. Subsequently, many specialized arboreal snake species convergently evolved slender bodies, presumably well‐suited for moving on thin branches and steep slopes, although how this accentuates changes in their shape and weight after eating and creates trade‐offs with locomotor performance is poorly understood. Hence, we tested whether the performance and modes of locomotion of a specialized arboreal snake (Boiga irregularis) changed after eating one or two mice when crawling on cylinders with and without pegs and on horizontal or 45° slopes. On surfaces with pegs: (1) only lateral undulation was used; (2) speed decreased with increased meal size; and (3) unexpectedly, more sideways toppling occurred than without pegs. On the horizontal cylinders without pegs, most unfed snakes used lateral undulation with continuous sliding contact, whereas, after eating two mice, most snakes periodically stopped and gripped the cylinder with speeds of concertina locomotion similar to those for the lateral undulation of unfed snakes. Thus, the behaviour of switching to a gripping mode of locomotion (concertina) circumvented some of the constraints of a slender limbless body plan, for which bulky meals alter shape and can impede the movement of the propulsive structures. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 446–458.  相似文献   

20.
Survival, in part, depends on an individual's ability to evade predators. In desert regions some lizard species have evolved head‐first sand‐diving strategies to escape predators. To facilitate this behaviour, a distinctive head morphology that facilitates sand‐diving has evolved. This specialised head morphology may, however, come at a cost to other ecologically relevant functions, particularly bite force. Here, we investigated the relationship between morphology and function in a southern African lacertid lizard genus, Meroles, which consists of eight species that utilise different escape strategies, including sand‐diving and running for cover. It was hypothesized that the specialised head morphology of diving species would negatively affect bite force capacity. We found that species from each escape strategy category differed significantly in head shape, but not bite force performance. A phylogenetic tree of the genus was constructed using two mitochondrial and two nuclear genes, and we conducted phylogenetic comparative analyses. One aspect of the head shape differed between the escape strategies once phylogeny was taken into account. We found that bite force may have co‐evolved with head morphology, but that there was no trade‐off between biting capacity and escape strategy in Meroles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号