共查询到20条相似文献,搜索用时 0 毫秒
1.
Kullappan Malathi 《Biotechnology & genetic engineering reviews》2018,34(2):243-260
Prolonged antibiotic therapy for the bacterial infections has resulted in high levels of antibiotic resistance. Initially, bacteria are susceptible to the antibiotics, but can gradually develop resistance. Treating such drug-resistant bacteria remains difficult or even impossible. Hence, there is a need to develop effective drugs against bacterial pathogens. The drug discovery process is time-consuming, expensive and laborious. The traditionally available drug discovery process initiates with the identification of target as well as the most promising drug molecule, followed by the optimization of this, in-vitro, in-vivo and in pre-clinical studies to decide whether the compound has the potential to be developed as a drug molecule. Drug discovery, drug development and commercialization are complicated processes. To overcome some of these problems, there are many computational tools available for new drug discovery, which could be cost effective and less time-consuming. In-silico approaches can reduce the number of potential compounds from hundreds of thousands to the tens of thousands which could be studied for drug discovery and this results in savings of time, money and human resources. Our review is on the various computational methods employed in new drug discovery processes. 相似文献
2.
目的建立快速检测实验大鼠冠状病毒和仙台病毒的双重PCR方法。方法根据大鼠冠状病毒N基因、仙台病毒L基因设计特异性引物;经过双重PCR优化,特异性和敏感性的检测,建立双重PCR体系。应用该PCR体系检测人工感染仙台病毒组织DNA样本和实验动物组织样本,并与ELISA方法比对。结果双重PCR扩增出大鼠冠状病毒(168 bp)和仙台病毒(262 bp)目的条带,PCR扩增产物测序结果利用核酸BLAST功能进行同源序列对比,仙台病毒和大鼠冠状病毒同源性分别为100%和99%。仙台病毒和大鼠冠状病毒的检测下限为1.56×10~2 copies/μL。特异性检测对小鼠肝炎病毒扩增,产生片段大小近似大鼠冠状病毒产物。应用建立的双重PCR体系检测人工感染仙台病毒组织DNA样本,30份DNA标本均被检出;检测94份实验动物肺组织样本,结果均阴性。结论建立的双重PCR方法操作简单、快速、特异性强、灵敏度高,能够实现对实验动物仙台病毒和大鼠冠状病毒病原体的快速检测。 相似文献
3.
Mathematical models for hepatitis C viral (HCV) RNA kinetics have provided a means of evaluating the antiviral effectiveness of therapy, of estimating parameters such as the rate of HCV RNA clearance, and they have suggested mechanism of action against HCV for both interferon and ribavirin. Nevertheless, the model that was originally formulated by Neumann et al. [1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282 (5386), 103-107] is unable to explain all of the observed HCV RNA profiles under treatment e.g., a triphasic viral decay and a viral rebound to baseline values after the cessation of therapy. Further, the half-life of productively HCV-infected cells, estimated from the second phase HCV RNA decline slope, is very variable and sometimes zero with no clear understanding of why. We show that extending the original model by including hepatocyte proliferation yields a more realistic model without any of these deficiencies. Further, we define and characterize a critical drug efficacy, such that for efficacies above the critical value HCV is ultimately cleared, while for efficacies below it, a new chronically infected viral steady-state level is reached. 相似文献
4.
Non-nucleoside inhibitors binding to hepatitis C virus NS5B polymerase reveal a novel mechanism of inhibition 总被引:3,自引:0,他引:3
Biswal BK Wang M Cherney MM Chan L Yannopoulos CG Bilimoria D Bedard J James MN 《Journal of molecular biology》2006,361(1):33-45
The RNA-dependent RNA polymerase (NS5B) from hepatitis C virus (HCV) is a key enzyme in HCV replication. NS5B is a major target for the development of antiviral compounds directed against HCV. Here we present the structures of three thiophene-based non-nucleoside inhibitors (NNIs) bound non-covalently to NS5B. Each of the inhibitors binds to NS5B non-competitively to a common binding site in the "thumb" domain that is approximately 35 Angstroms from the polymerase active site located in the "palm" domain. The three compounds exhibit IC(50) values in the range of 270 nM to 307 nM and have common binding features that result in relatively large conformational changes of residues that interact directly with the inhibitors as well as for other residues adjacent to the binding site. Detailed comparisons of the unbound NS5B structure with those having the bound inhibitors present show that residues Pro495 to Arg505 (the N terminus of the "T" helix) exhibit some of the largest changes. It has been reported that Pro495, Pro496, Val499 and Arg503 are part of the guanosine triphosphate (GTP) specific allosteric binding site located in close proximity to our binding site. It has also been reported that the introduction of mutations to key residues in this region (i.e. Val499Gly) ablate in vivo sub-genomic HCV RNA replication. The details of NS5B polymerase/inhibitor binding interactions coupled with the observed induced conformational changes provide new insights into the design of novel NNIs of HCV. 相似文献
5.
Masashi Mizokami Tadashi Imanishi Kazuho Ikeo Yoshiyuki Suzuki Etsuro Orito Takashi Kumada Ryuzo Ueda Shiro Iino Tatsunori Nakano 《FEBS letters》1999,450(3):25-298
We studied the mutation patterns of hepatitis C virus (HCV) and GB virus C/hepatitis G virus (HGV). Although the mutation patterns of the two viruses were similar to each other, they were quite different from that of HIV. In particular, the similarity of the patterns between HCV or HGV and human nuclear pseudogenes was statistically significant whereas there was no similarity between HIV and human nuclear pseudogenes. This finding suggests that the mutation patterns of HCV and HGV are similar to the patterns of spontaneous substitution mutations of human genes, implying that nucleotide analogues which are effective against HCV and HGV may have a side effect on the normal cells of humans. 相似文献
6.
Kozlov MV Polyakov KM Ivanov AV Filippova SE Kuzyakin AO Tunitskaya VL Kochetkov SN 《Biochemistry. Biokhimii?a》2006,71(9):1021-1026
Pyrogallol reversibly and noncompetitively inhibits the activity of the hepatitis C RNA-dependent RNA polymerase. Based on molecular modeling of the inhibitor binding in the active site of the enzyme, the inhibition was suggested to be realized via chelation of two magnesium cations involved in the catalysis at the stage of the phosphoryl residue transfer. The proposed model allowed us to purposefully synthesize new derivatives with higher inhibitory capacity. 相似文献
7.
8.
Based on the high-resolution X-ray crystallographic structure of phospholipase C from Bacillus cereus, the orientation of the phosphatidylcholine substrate in the active site of the enzyme is proposed. The proposal is based on extensive calculations using the GRID program and molecular mechanics geometry relaxations. The substrate model has been constructed by successively placing phosphate, choline and diacylglycerol moieties in the positions indicated from GRID calculations. On the basis of the resulting orientation of a complete phosphatidylcholine molecule, we propose a mechanism for the hydrolysis of the substrate. 相似文献
9.
Mukovnya AV Tunitskaya VL Khandazhinskaya AL Golubeva NA Zakirova NF Ivanov AV Kukhanova MK Kochetkov SN 《Biochemistry. Biokhimii?a》2008,73(6):660-668
A method has been developed for obtaining a full-length protein NS3 of hepatitis C virus with the yield of 6.5 mg/liter of cell culture, and conditions for measuring its NTPase and helicase activities have been optimized. The helicase reaction can proceed in two modes depending on the enzyme and substrate concentration ratio: it can be non-catalytic in the case of enzyme excess and catalytic in the case of tenfold substrate excess. In the latter case, helicase activity is coupled with NTPase and is stimulated by ATP. A number of NTP and inorganic pyrophosphate analogs were studied as substrates and/or inhibitors of NS3 NTPase activity, and it was found that the structure of nucleic base and ribose fragment of NTP molecule has a slight effect on its inhibitory (substrate) properties. Among the nucleotide derivatives, the most efficient inhibitor of NTPase activity is 2 -deoxythymidine 5 -phosphoryl-beta,gamma-hypophosphate, and among pyrophosphate analogs imidodiphosphate exhibited maximal inhibitory activity. These compounds were studied as inhibitors of the helicase reaction, and it was shown that imidodiphosphate efficiently inhibited the ATP-dependent helicase reaction and had almost no effect on the ATP-independent duplex unwinding. However, the inhibitory effect of 2 -deoxythymidine 5 -phosphoryl-beta,gamma-hypophosphate was insignificant in both cases, which is due to the possibility of helicase activation by this ATP analog. 相似文献
10.
A novel method for the determination of the three-dimensional (3D) structure of oligosaccharides in the solid state using experimental 13C NMR data is presented. The approach employs this information, combined with 13C chemical shift surfaces (CSSs) for the glycosidic bond carbons in the generation of NMR pseudopotential energy functions suitable for use as constraints in molecular modeling simulations. Application of the method to trehalose, cellobiose, and cellotetraose produces 3D models that agree remarkably well with the reported X-ray structures, with phi and psi dihedral angles that are within 10 degrees from the ones observed in the crystals. The usefulness of the approach is further demonstrated in the determination of the 3D structure of the cellohexaose, an hexasaccharide for which no X-ray data has been reported, as well as in the generation of accurate structural models for cellulose II and amylose V6. 相似文献
11.
A mathematical modeling of hepatitis C virus (HCV) dynamics and antiviral therapy has been presented in this paper. The proposed model, which involves four coupled ordinary differential equations, describes the interaction of target cells (hepatocytes), infected cells, infectious virions and non-infectious virions. The model takes into consideration the addition of ribavirin to interferon therapy and explains the dynamics regarding a biphasic and triphasic decline of viral load in the model. A critical drug efficacy parameter has been defined and it is shown that for an efficacy above this critical value, HCV is eradicated whereas for efficacy lower this critical value, a new steady state for infectious virions is reached, which is lower than the previous steady state value. 相似文献
12.
Increasing prices of petrochemical resins and possible harmful formaldehyde emissions from conventionally produced wood composites have resulted in increased interest in enzymatic binder systems as environmentally friendly alternatives for gluing lignocellulosic products. In this study, laccase mediator systems (LMSs) were used to activate lignin on wood fiber surfaces in the pilot-scale production of medium-density fiberboard (MDF) using a dry process. Three different mediators were applied: 4-hydroxybenzoic acid (HBA), 1-hydroxybenzotriazole (HBT), and acetosyringone (AS) of which HBA performed best. The mechanical properties of the manufactured boards produced with thermomechanical pulp (TMP) fibers, laccase, and HBA fulfilled all required European standards for wood-based panels. Oxygen consumption rates of the different LMSs and (13)C NMR spectroscopy results for treated TMP fibers were obtained for qualitative and quantitative analysis of lignin activation. The results show that reactions were most effective within the first 30 min of incubation. Oxygen consumption was fastest and highest for the LMS using HBA. (13)C NMR spectroscopy indicated the highest decrease of aromatic groups in the wood fiber lignin with this LMS. The data correlated well with the quality of the MDF. The required enzymatic reaction times allowed direct integration of the LMS into standard MDF production techniques. The results indicate that application of LMSs has a high potential for environmentally friendly MDF production. 相似文献
13.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997 相似文献
14.
Development and evaluation of a protein microarray chip for diagnosis of hepatitis C virus 总被引:3,自引:0,他引:3
A protein chip diagnostic kit was developed for the diagnosis of hepatitis C virus (HCV) based on the protein chip technique and the immuno-concentration method. This kit was designed for low-density protein chips and also for the availability of multiple sample screening. Applicability of the chip was evaluated using 96 blood specimens and the results were compared to results of an anti-HCV enzyme immunoassay (EIA) test. With further development, the technology associated with the development of this chip could be applied to the simultaneous detection of multiple protein-protein, protein-ligand interactions. 相似文献
15.
Steatosis is a frequent complication of hepatitis C virus infection. In mice, this condition is recapitulated by the expression of a single viral protein, the nucleocapsid core. Core localizes to the surface of lipid droplets (LDs) in infected liver cells through a process dependent on host diacylglycerol acyltransferase 1 (DGAT1), an enzyme that synthesizes triglycerides in the endoplasmic reticulum. Whether DGAT1 also plays a role in core-induced steatosis is uncertain. Here, we show that mouse embryonic fibroblasts isolated from DGAT1(-/-) mice are protected from core-induced steatosis, as are livers of DGAT1(-/-) mice expressing core, demonstrating that the steatosis is DGAT1-dependent. Surprisingly, core expression did not increase DGAT1 activity or triglyceride synthesis, thus excluding the possibility that core activates DGAT1 to cause steatosis. Instead, we find that DGAT1-dependent localization of core to LDs is a prerequisite for the steatogenic properties of the core. Using biochemical and immunofluorescence microscopy techniques, we show that the turnover of lipids in core-coated droplets is decreased, providing a physiological mechanism for core-induced steatosis. Our results support a bipartite model in which core first requires DGAT1 to gain access to LDs, and then LD-localized core interferes with triglyceride turnover, thus stabilizing lipid droplets and leading to steatosis. 相似文献
16.
Near infrared spectroscopy and aquaphotomics: Novel approach for rapid in vivo diagnosis of virus infected soybean 总被引:1,自引:0,他引:1
Balasuriya Jinendra Maria Vassileva Roumiana Tsenkova 《Biochemical and biophysical research communications》2010,397(4):685-472
Near infrared spectroscopy with aquaphotomics as a novel approach was assessed for the diagnosis of soybean plants (Glycine max) infected with soybean mosaic virus (SMV) at latent symptomless stage of the disease. Near infrared (NIR) leaf spectra (in the range of 730-1025 nm) acquired from soybean plants with and without the inoculation of SMV were used. Leaf samples from all plants were assayed with enzyme-linked immunosorbent assay (ELISA) to confirm the infection. Previously reported NIR band for water at 970 nm and two new bands at 910 nm and 936 nm in the water specific region of NIR were found to be markedly sensitive to the SMV infection 2 weeks prior to the appearance of visual symptoms on infected leaves. The spectral calibration model soft independent modeling of class analogy (SIMCA), predicted the disease with 91.6% sensitivity and 95.8% specificity when the second order derivative of the individual plant averaged spectra were used. The study shows the potential of NIR spectroscopy with its novel approach to elucidate latent biochemical and biophysical information of an infection as it allowed successful discrimination of SMV infected plant from healthy at the early symptomless stage of the disease. 相似文献
17.
Activation of Th1 immunity is a common immune mechanism for the successful treatment of hepatitis B and C: tetramer assay and therapeutic implications 总被引:24,自引:0,他引:24
Tsai SL Sheen IS Chien RN Chu CM Huang HC Chuang YL Lee TH Liao SK Lin CL Kuo GC Liaw YF 《Journal of biomedical science》2003,10(1):120-135
Both chronic hepatitis B and C virus (HBV and HCV) infections respond ineffectively to current antiviral therapies. Recent studies have suggested that treatment outcomes may depend on the development of type 1 T helper (Th1) and Th2 cell responses. Specifically, activation of Th1 immunity may play a major role in successfully treating hepatitis B and C. This model was revisited herein by evaluating immune responses in 36 HBV and 40 HCV patients with or without treatment, in an attempt to find a common immune mechanism for successful treatment. The immune responses in all examined cases were studied by peripheral blood mononuclear cell (PBMC) proliferation and cytokine responses to viral antigens, cytotoxic T lymphocyte (CTL) responses, enzyme-linked immunospot (ELISPOT) assay, and tetramer staining of virus-specific CD8+ T cells. The overall results revealed that all responders among both HBV- and HCV-infected cases displayed significantly higher PBMC proliferation to viral antigens with a predominant Th1 cytokine profile. Furthermore, the Th1-dominant responses were associated with significant enhancement of CTL activities and were correlated with ELISPOT data, while non-responders responded more weakly. During therapy, the numbers of tetramer-staining, virus-specific CD8+ T cells showed greater increases in responders than in non-responders (p = 0.001). The frequencies determined by the tetramer assay were approximately 200-fold higher than data estimated by limiting-dilution analysis. In conclusion, activation of Th1 immunity accompanied by enhancement of CTL activity during therapy is a common immune mechanism for successfully treating hepatitis B and C, and therefore may have important therapeutic implications. 相似文献
18.
19.
Nakajima S Nakajima K Nobusawa E Zhao J Tanaka S Fukuzawa K 《Microbiology and immunology》2007,51(12):1179-1187
Starting with nine plaques of influenza A/Kamata/14/91(H3N2) virus, we selected mutants in the presence of monoclonal antibody 203 (mAb203). In total, amino acid substitutions were found at nine positions (77, 80, 131, 135, 141, 142, 143, 144 and 146), which localized in the antigenic site A of the hemagglutinin (HA). The escape mutants differed in the extent to which they had lost binding to mAb203. HA protein with substitutions of some amino acid residues created by site-directed mutagenesis in the escape mutants retained the ability to bind to mAb203. Changes in the amino acid character affecting charge or hydrophobicity accounted for the binding capacity to the antibody of the HA with most of the substitutions in the escape mutants and binding-positive mutants. However, the effect of some amino acid substitutions remained unexplained. A three-dimensional model of the 1991 HA was constructed and used to analyze substituted amino acids in these mutants for the accessible surface hydrophobic and hydrophilic characters. One amino acid substitution in an escape mutant and another amino acid substitution in a binding-positive mutant seemed to be explained by the changes noted on this model. 相似文献
20.
There are highly complicated signal systems in response to a variety of environmental stimuli in organisms. Recently, intensive studies have focused on the relationship between human diseases and alterations of cellular signal transduction. A number of human diseases, such as angiocardiopathy, diabetes and cancer, have been identified to be correlative with disruption of signaling. It was estimated that approximately 3% of world抯 population was infected with hepatitis C virus (HCV), and 70%… 相似文献