首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ag processing and structural requirements involved in the generation of a major T cell epitope from the hen egg-white lysozyme protein (HEL74-88), containing two cysteine residues at positions 76 and 80, were investigated. Several T cell hybridomas derived from both low responder (I-Ab) and high responder (I-Ak) mice recognize this region. These hybridomas are strongly responsive to native HEL, but unresponsive to the reduced and carboxymethylated protein. Air-oxidized HEL74-88 peptide was unable to bind I-Ak molecules and failed to stimulate T cells in the absence of intracellular Ag processing. Further functional competition assays showed that alkylation of cysteine residues with bulky methyl groups interferes with the contacts for the MHC class II molecules (I-Ak) of high responder mice and the I-Ab-restricted TCR of low responder mice. Serine substitutions of the cysteine residues of HEL74-88 either enhanced or abrogated T cell stimulation by the peptides without significant alterations in the class II binding. These results suggest that the cysteine residues of peptides must be free from disulfide bonding for efficient stimulation of T cells and yet frequently used modifications of cysteine residues may not be suitable for peptide-based vaccine development.  相似文献   

2.
We examined the structural characteristics of a peptide Ag that determine its ability to interact with class II-MHC molecules and TCR. The studies reported here focused on recognition of the hen egg white lysozyme (HEL) tryptic fragment HEL(34-45) by two I-Ak-restricted T cell hybridomas. HEL(34-45) bound to I-Ak created more than one antigenic specificity. Experiments with truncated peptides and alanine-substituted peptides indicated that two T cell hybrids either recognized distinct regions of the HEL(34-45) peptide, or different determinants generated by interaction of the peptide with I-Ak. Although we identified residues of HEL(34-45) that were critical to T cell recognition, no positions in the peptide were identified as I-Ak contact sites using single alanine substitutions. This suggests that more than one site or region of the peptide contributes to the binding to I-Ak. Finally, the murine lysozyme equivalent of 34-45 did not bind to I-Ak. Substitution of the corresponding murine lysozyme (self) residue at position 41 of HEL(34-45) abrogated I-Ak binding of the peptide.  相似文献   

3.
We analyzed CD4+ T helper responses to wild-type (wt) and mutated (mut) p53 protein in normal and tumor-bearing mice. In normal mice, we observed that although some self-p53 determinants induced negative selection of p53-reactive CD4+ T cells, other p53 determinants (cryptic) were immunogenic. Next, BALB/c mice were inoculated with J774 syngeneic tumor cell line expressing mut p53. BALB/c tumor-bearing mice mounted potent CD4+ T cell responses to two formerly cryptic peptides on self-p53. This response was characterized by massive production of IL-5, a Th2-type lymphokine. Interestingly, we found that T cell response was induced by different p53 peptides depending upon the stage of cancer. Mut p53 gene was shown to contain a single mutation resulting in the substitution of a tyrosine by a histidine at position 231 of the protein. Two peptides corresponding to wt and mutated sequences of this region were synthesized. Both peptides bound to the MHC class II-presenting molecule (Ed) with similar affinities. However, only mut p53.225-239 induced T cell responses in normal BALB/c mice, a result strongly suggesting that high-affinity wt p53.225-239 autoreactive T cells had been eliminated in these mice. Surprisingly, CD4+ T cell responses to both mut and wt p53.225-239 peptides were recorded in J774 tumor-bearing mice, a phenomenon attributed to the recruitment of low-avidity p53.225-239 self-reactive T cells.  相似文献   

4.
We have analyzed the interaction of the hen egg-white lysozyme (HEL) peptide 107-116 with the MHC class II molecule I-Ek, using truncated and single residue substitution analogues to measure activation of I-Ek-restricted, 107-116-specific T cell hybridomas and competition for Ag presentation by I-Ek molecules. These results have been compared with previous findings on the interaction of the same peptide with the I-Ed molecule. Stimulation of T cell hybridomas by truncated peptides defines the sequence 108-116 as the minimum epitope necessary for activation of both I-Ek- and I-Ed-restricted T cell hybridomas. Substitution analysis pinpoints three residues (V109, A110, and K116) in the sequence 108-116 as being critical for binding to I-Ek molecules and demonstrates the involvement of most other residues in recognition by T cells. Results previously obtained for binding of HEL 107-116 to I-Ed molecules indicated that peptide residues R112, R114, and K116 were critical for interaction with I-Ed. Comparison of these results indicates a difference in the likely MHC contact residues between the HEL sequence 108-116 and I-Ed or I-Ek molecules, suggesting that the same HEL peptide assumes a different conformation in the binding site of these two MHC molecules. This in turn affects residues interacting with the specific T cell receptor. According to the hypothetical tridimensional structure predicted for class II molecules, the difference in MHC contact residues observed within the sequence 108-116 can be related to polymorphic amino acids in the binding site of I-Ek and I-Ed molecules. A search through published binding data for a common pattern in this and other I-Ek-binding peptides has permitted us to derive a possible motif for predicting peptide binding to I-Ek molecules. This putative motif was tested by determining binding to I-Ek of an unbiased panel of about 150 synthetic peptides. Binding data indeed demonstrate the presence of this motif in the majority of good binders to I-Ek molecules.  相似文献   

5.
The determinants recognized by two I-Ak-restricted hen egg-white lysozyme-specific T cell hybridomas were differentiated with a series of truncated or substituted peptides. The 10mer 52-61 was the smallest peptide that was immunogenic for both T cells. This peptide differed by a single residue, Leu56, from the corresponding autologous lysozyme peptide, which was nonimmunogenic. The addition of amino acids to the amino terminus of 52-61 increased the immunogenicity of the peptides for 3A9 T cells and decreased the immunogenicity for 2A11 T cells. By deleting or diiodinating Tyr53, the resulting peptides were rendered totally nonimmunogenic. In contrast, the 3-NO2-Tyr derivative was fully immunogenic for the 3A9 cells but completely nonimmunogenic for the 2A11 cells. Thus, two different, but very similar, determinants were generated by the same HEL peptide and the I-Ak molecule.  相似文献   

6.
Binding to Ia protects an immunogenic peptide from proteolytic degradation   总被引:2,自引:0,他引:2  
A 34 amino acid hen egg-white lysozyme (HEL) peptide was designed and synthesized to investigate if an immunogenic peptide once bound to an Ia molecule becomes proteolytically inaccessible. The determinant recognized by T cells, HEL(52-61) was composed of L-amino acids whereas the 12 amino acid extension on each side of this core were composed of D-epimers. This peptide, HEL(40-73) was resistant to proteolysis, except in the core region, where any cleavage would destroy the determinant. Initially HEL(40-73) was shown to be able to stimulate the HEL specific T cell, 3A9, indicating that an I-Ak molecule can bind and present large peptides that extend beyond the theoretical binding groove. HEL(40-73) was then used to examine the proteolytic sensitivity of determinants recognized by T cells. If HEL(40-73) was treated with chymotrypsin before binding to I-Ak, the determinant was totally destroyed; however, if HEL(40-73) was allowed to first bind to I-Ak, then the determinant became resistant to chymotrypsin cleavage. Thus an Ia molecule can protect a determinant from proteolytic degradation, a finding that has important implications for proposed pathways of Ag processing.  相似文献   

7.
The murine T cell proliferative response to the carboxyl terminal cyanogen bromide cleavage fragment 81-104 of pigeon cytochrome c (cyt) has been studied. Two interesting properties of this response have been previously described. First, T cells from B10.A mice primed with pigeon cyt 81-104 show more vigorous proliferation when restimulated with moth cyt 81-103 than when stimulated with pigeon cyt 81-104; that is, the B10.A T cell response to pigeon shows heteroclitic restimulation by moth. Second, T cells primed with the acetimidyl derivative (Am) of pigeon cyt 81-104 did not cross-react with the unmodified cyt fragments, but Am-moth cyt 81-103 still stimulated Am-pigeon cyt 81-104 primed T cells better than the Am-pigeon cyt 81-104 fragment. These results raised the issue of whether the antigenic sites on the fragments responsible for the specificity of T cell priming in vivo differed from the residues that contributed to the heteroclitic response of pigeon (or Am pigeon)-primed T cells to moth cyt c fragments. In this paper, synthetic peptide antigens were tested in order to identify which residues caused the heterocliticity of the moth fragment and which residues were involved in the antigenic differentiation of native and derivatized fragments. The heterocliticity of the T cell response to moth fragment 81-103 was found to be due to the deletion of the penultimate residue (Ala103) from the pigeon fragment. However, the ability to cause heterocliticity was not uniquely a property of this deletion. T cells from animals primed with peptides containing substitutions at positions 100 or 102 were also heteroclitically stimulated by the moth-like antigen. The observation that T cells could not be primed for recognition of the changes in peptide sequence that caused heteroclitic stimulation suggests that T cells do not directly recognize determinants in this region. The antigenically significant site of derivatization for T cell priming was found to be Lys99. Furthermore, substitution of a Gln at position 99 also resulted in elicitation of yet a third set of T cell clones specific for the presence of that residue. That is, the specificity of the primed T cell population was found to be altered by changes at residue-99, but no such alterations in specificity were demonstrable when T cells primed with peptides altered at residue-103, residue-102, or residue-100 were compared. Overall, the results demonstrate that the antigen can be divided into two functionally distinct sites that are in close physical proximity.  相似文献   

8.
Class II MHC molecules on the surface of an APC present immunogenic peptides derived mainly from exogenous proteins to CD4+ T cells. During its transport to the cell surface, class II molecules intersect the endocytic pathway where they acquire peptides derived from endocytosed proteins. However, class II-restricted presentation of endogenously derived peptides can also occur. The current studies were undertaken to examine the ability of different types of APC to generate and present four different T cell determinants derived from an endogenous, nonsecreted, truncated form of hen-egg white lysozyme (HEL[1-80]-Kk). This was compared with the ability of these APC to generate the same determinants from exogenous HEL. All the peptides derived from endogenous HEL[1-80]-Kk tested, were presented by B cells to HEL-specific T cell hybridomas with an efficiency similar to presentation of the same determinants from exogenous HEL. In contrast, an I-Ak-bearing rat fibroblast was unable to generate the HEL peptide 25-43 from exogenous HEL, but could efficiently produce it from endogenous HEL[1-80]-Kk. The results indicate first, that peptides derived from an endogenous Ag can be presented by MHC class II molecules with an efficiency comparable to that of the presentation of the exogenous Ag. Second, that Ag-presenting B cells can generate the same repertoire of antigenic peptides from endogenous Ag as those generated from the exogenous protein. And third, that in contrast to B cells, certain "nonprofessional" APC can generate, from an endogenous protein, T cell determinants distinct from those generated after endocytosis of the exogenous protein. These results suggest that processing of exogenous and endogenous Ag by different APC take place in different intracellular compartments.  相似文献   

9.
The delayed-type hypersensitivity (DTH) response of C3H/HeN mice to hen egg white lysozyme (HEL) can be blocked by a single iv injection of a solution of HEL in buffered saline 7 days before sensitization of animals with HEL in complete Freund's adjuvant (CFA). The minimal structure of HEL required for the suppression was examined by determining the abilities of various HEL-derivative peptides to inhibit HEL-DTH. Treatment of normal mice with Ploop I X II, sequence 57-107 (Cys64-Cys80, Cys76-Cys94), or P17 (sequences 1-27 and 123-129 linked by Cys6-Cys127) 7 days before immunization with HEL resulted in marked suppression of the DTH response. This inhibition of DTH involved generation of suppressor T cells (Ts). The results suggested that two suppressor pathways are involved. These data, together with another recent finding (1) that an entirely different portion of HEL is a suppressor determinant (SD) in A/J mice, indicate that different epitopes act as SDs in different strains of mice. Of the loop region peptides tested, Plc (intact loop I joined to a linear peptide, residues 84-97) was found to be the minimum structure capable of suppressing the HEL-DTH response; loop I or II alone did not cause suppression. Activation of Ts cells by the loop peptide depended on its conformational structure; completely reduced and carboxymethylated Ploop I X II did not cause suppression.  相似文献   

10.
Thyroglobulin (Tg) is unique in its ability to incorporate and store available iodine in the form of iodotyrosyl residues. Iodination of Tg has been known to increase its immunopathogenicity in experimental animals, presumably through the formation of iodine-containing neoantigenic determinants that can elicit an autoimmune response, but defined pathogenic Tg peptides carrying iodotyrosyls have not yet been identified. We report in this study that a systematic, algorithm-based search of mouse Tg has delineated three iodotyrosyl-containing peptides that activate autoreactive T cells and cause experimental autoimmune thyroiditis in normal CBA/J mice. These peptides (aa 117-132, 304-318, and 1931-1945) were not immunogenic in their native form, and iodination of tyrosyls facilitated either peptide binding to MHC or T cell recognition of the peptide. These results demonstrate that iodotyrosyl formation in normal Tg confers pathogenic potential to certain peptides that may otherwise remain innocuous and undetectable by conventional mapping methods.  相似文献   

11.
A synthetic peptide representing sequences of type II collagen, (CII 245-270), has previously been used to induce tolerance and suppress arthritis in DBA/1 mice. To determine important residues, a series of peptides, each containing one or two site-directed substitutions, was generated. Mononuclear cells from DBA/1 mice immunized with CII were cultured in the presence of each peptide and the T cell response determined by measuring IFN-gamma in culture supernatant fluids. Substitutions within the region CII 260-270 led to significant decreases in IFN-gamma responses, identifying this sequence as a T cell epitope. To determine the effects of substitutions within this epitope on arthritis, substituted peptides were administered to neonatal mice as tolerogens. Five site-directed substitutions, four of which included the insertion of a residue found in type I collagen to replace its type II counterpart, abrogated the ability of the peptides to induce tolerance and suppress arthritis. These substitutions were located at residues 260, 261, 263, 264, and 266. Two patterns of T cell reactivity were observed. Peptides containing individual substitutions at positions 261, 264, or 266 were capable of generating a significant T lymphokine response, although those containing substitutions at residues 260 or 263 were ineffective Ag. Systematic analysis of the fine structures of T cell determinants important for autoimmune arthritis can lead to strategies for therapeutic intervention.  相似文献   

12.
Helper (CD4+) T lymphocytes recognize protein Ag as peptides associated to MHC class II molecules. The polymorphism of class II alpha- and beta-chains has a major influence on the nature of the peptides presented to CD4+ T lymphocytes. For instance, T cell responses in H-2k and H-2b mice are directed at different epitopes of the hen egg lysozyme (HEL) molecule. The current studies were undertaken with the aim of defining the role of mixed haplotype I-A (alpha k beta b and alpha b beta k) molecules in T cell responses to HEL in (H-2k x H-2b)F1 mice, as well as the nature of the immunogenic peptides of HEL recognized in the context of I-A alpha k beta b and I-A alpha b beta k. A series of HEL-reactive T cell lines and hybridomas derived from MHC class II heterozygous (C57BL/6 x C3H F1) mice were established. Their responsiveness to HEL and synthetic HEL peptides was analyzed with the use of L cells transfected with either I-A alpha k beta b or I-A alpha b beta k as APC. Out of 28 clonal T cell hybridomas tested, 13 (46%) only responded to HEL presented by I-A alpha k beta b, 11 (40%) by I-A alpha b beta k (and to a minor extent I-A alpha k beta k), only 4 (14%) were primarily restricted by I-Ak, and none by I-Ab. All the I-A alpha k beta b-restricted T cell hybridomas responded to the HEL peptide 46-61 and to its shorter fragment 52-61, even at concentrations as low as 0.3 nM. As this determinant has been previously defined as immunodominant for I-Ak but not for I-Ab mice, these results suggest a role for the I-A alpha k chain in the selection and immunodominance of HEL 52-61 in H-2k mice. The fine specificity of I-A alpha k beta b-restricted T cell hybridomas for a series of different HEL peptides around the sequence 52 to 61 suggests that peptide 52-61 binds to I-A alpha k beta b with higher affinity than to I-A alpha k beta k. The peptides recognized in the context of I-A alpha b beta k and I-A alpha k beta k were not identified.  相似文献   

13.
The T cell surface glycoprotein CD4 plays an important role in mediating cellular immunity and serves as the receptor for human immunodeficiency virus. In order to identify primary sequences within the CD4 molecule that may be involved in the binding of the HIV-I envelope, we synthesized various peptides corresponding to the V1, V2, V3, and V4 domains of CD4. We tested the ability of these peptides to block the binding of purified HIV-I gp120 to CD4+ human lymphoblastic leukemia cells (CEM) using fluorescence-activated cell sorting. One of these peptides, corresponding to CD4 amino acids (74-95), when preincubated with gp120, blocked its subsequent binding to CEM cells by 80%. A truncated form of this peptide (81-95), was found to be as efficient as the longer peptide (74-95) in inhibiting the binding of gp120 to CEM cells. The same peptide did not block the binding of OKT4A or Leu3A anti-CD4 monoclonal antibodies, which were previously shown to block HIV-I binding to CD4. The peptides were also tested for their ability to block HIV-I infection of a T cell line in vitro. Only CD4 peptide (74-95) and the shorter fragment (81-95) succeeded in protecting T cells against infection with different HIV-I strains. All the other peptides examined had no effect on gp120 binding to CEM cells and did not block syncytia formation. Goat polyclonal antibodies against the CD4 peptide (74-95) gave modest interference of gp120 binding to CEM cells. These data suggest that the CD4 region (74-95) participates in the CD4-mediated binding and/or internalization of HIV-I virion.  相似文献   

14.
T cells expressing two different TCRs were generated by interbreeding 3A9 and AND CD4+ TCR transgenic mice specific for the hen egg lysozyme (HEL) peptide 48-62:I-Ak and moth cytochrome c (MCC) peptide 88-103:I-Ek peptide:MHC ligands, respectively. Peripheral T cells in the offspring express two TCR V beta-chains and respond to HEL and MCC. We observed minimal or no additive effects upon simultaneous suboptimal stimulation with both agonist peptides; however, an antagonist peptide for the 3A9 TCR was able to inhibit the response of the dual receptor T cells to MCC, the AND TCR agonist. This HEL antagonist peptide did not affect AND single transgenic T cells, indicating that the antagonism observed in the dual TCR cells is dependent on the presence of the HEL-specific 3A9 TCR. In contrast, anti-TCR Abs mediate receptor-specific antagonism. These results demonstrate that peptide antagonism exerts a dominant effect.  相似文献   

15.
We show that the in vivo generation of cytokine-producing CD4 T cells specific for a given major histocompatibility class-II (MHCII)-binding peptide of hen egg lysozyme (HEL) is facilitated when mice are immunized with splenic antigen presenting cells (APC) pulsed with this HEL peptide and another peptide that binds a different MHCII molecule. This enhanced generation of peptide-specific effector CD4 T cells requires that the same splenic APC be pulsed with both peptides. Pulsed B cells, but not pulsed dendritic cells (DCs), can mediate CD4 T cell cooperation, which can be blocked by disrupting OX40-OX40L (CD134-CD252) interactions. In addition, the generation of HEL peptide-specific CD4 T cell memory is greater when mice are primed with B cells pulsed with the two peptides than with B cells pulsed with the HEL- peptide alone. Based on our findings, we suggest CD4 T cell cooperation is important for vaccine design, underlies the phenomenon of “epitope-spreading” seen in autoimmunity, and that the efficacy of B cell-depletion in the treatment of human cell-mediated autoimmune disease is due to the abrogation of the interactions between autoimmune CD4 T cells that facilitates their activation.  相似文献   

16.
We generated transgenic mice that expressed hen egg-white lysozyme (HEL) under a class II MHC promoter. The A7 line expressed HEL with a point mutation in the Asp(52) residue, the main anchor amino acid responsible for the selection of the chemically dominant family of peptides (52-60) by I-A(k) molecules. Mice expressing HEL with Ala(52) were completely unresponsive when immunized with the same protein, i.e., HEL A52. However, the same mice immunized with wild-type HEL elicited T cells that recognized a conformation of the 52-61 core sequence uniquely different between Asp(52) and Ala(52) containing peptides. Importantly, some T cells also recognized the HEL A52 peptide given exogenously but not the same peptide processed from HEL A52 protein. Thus, a core MHC anchor residue influences markedly the specificity of the T cells. We discuss the relevance of these findings to autoimmunity and vaccination with altered peptides.  相似文献   

17.
T cell responses to the immunodominant peptide (residues 83-99) of myelin basic protein are potentially associated with multiple sclerosis (MS). This study was undertaken to examine whether a common sequence motif(s) exists within the TCR complementarity-determining region (CDR)-3 of T cells recognizing the MBP83-99 peptide. Twenty MBP83-99-reactive T cell clones derived from patients with MS were analyzed for CDR3 sequences, which revealed several shared motifs. Some V beta 13.1 T cell clones derived from different patients with MS were found to contain an identical CDR3 motif, V beta 13.1-LGRAGLTY. Oligonucleotides complementary to the shared CDR3 motifs were used as specific probes to detect identical target CDR3 sequences in a large panel of T cell lines reactive to MBP83-99 and unprimed PBMC. The results revealed that, in contrast to other CDR3 motifs examined, the LGRAGLTY motif was common to T cells recognizing the MBP83-99 peptide, as evident by its expression in the majority of MBP83-99-reactive T cell lines (36/44) and PBMC specimens (15/48) obtained from randomly selected MS patients. The motif was also detected in lower expression in some PBMC specimens from healthy individuals, suggesting the presence of low precursor frequency of T cells expressing this motif in healthy individuals. This study provides new evidence indicating that the identified LGRAGLTY motif is preferentially expressed in MBP83-99-reactive T cells. The findings have important implications in monitoring and targeting MBP83-99-reactive T cells in MS.  相似文献   

18.
The processing by antigen-presenting cells (APC) of the protein hen egg-white lysozyme (HEL) results in the selection of a number of peptide families by the class II major histocompatibility complex (MHC) molecule, I-A(k). Some of these families are expressed in very small amounts, in the order of a few picomoles/10(9) APC. We detected these peptides from an extract of class II MHC molecules by using monoclonal anti-peptide antibodies to capture the MHC-bound peptides prior to their examination by HPLC tandem mass spectrometry. Here, we have identified several members of a family of peptides encompassing residues 20-35, which represent less than 1% of the total HEL peptides. Binding analysis indicated that the core segment of the family was represented by residues 24-32 (SLGNWVCAA). Asn-27 (shown in boldface) is the main MHC-binding residue, mapped as interacting with the P4 pocket of the I-A(k) molecule. Analysis of several T cell hybridomas indicated that three residues contacted the T cell receptor: Tyr-23 (P-1), Leu-25 (P3), and Trp-28 (P5). The HEL peptides isolated from the APC extract were sulfated on Tyr-23, but further analysis showed that this modification did not occur physiologically but took place during the peptide isolation.  相似文献   

19.
The C57BL/6 (H-2b) mouse is a nonresponder to hen egg-white lysozyme (HEL) injected i.p., owing to a T suppressor cell-inducing determinant at the amino-terminal region. After immunization with a 93-amino acid fragment (a.a. 13-105) of HEL lacking this determinant, all clones from two independently derived C57BL/6 T cell lines were found to be specific for epitopes within a subregion of peptide 74-96. Three specificity patterns for the clones could be defined on the basis of cross-reactivities with only two other species variant lysozymes. Reactivities of all three specificity groups was consistent with the serine to threonine substitution at position 91, although reactivity of one of the groups could be affected by substitutions at position 84. The results confirm at the clonal level that even for distantly related antigens, only limited regions are recognized by T cells. They are consistent with the notion that specific sites on the antigen capable of interaction with Ia molecules lead to dominance of certain regions for T cell reactivity. Moreover, the diversity in specificity among clones suggests that the limiting feature of T cell responsiveness is not a lack of available T cells in the repertoire directed against a single antigenic site.  相似文献   

20.
Herpesviruses require membrane-associated glycoproteins gB, gH, and gL for entry into host cells. Epstein-Barr virus (EBV) gp42 is a unique protein also required for viral entry into B cells. Key interactions between EBV gp42 and the EBV gH/gL complex were investigated to further elucidate their roles in membrane fusion. Deletion and point mutants within the N-terminal region of gp42 revealed residues important for gH/gL binding and membrane fusion. Many five-residue deletion mutants in the N-terminal region of gp42 that exhibit reduced membrane fusion activity retain binding with gH/gL but map out two functional stretches between residues 36 and 96. Synthetic peptides derived from the gp42 N-terminal region were studied in in vitro binding experiments with purified gH/gL and in cell-cell fusion assays. A peptide spanning gp42 residues 36 to 81 (peptide 36-81) binds gH/gL with nanomolar affinity, comparable to full-length gp42. Peptide 36-81 efficiently inhibits epithelial cell membrane fusion and competes with soluble gp42 to inhibit B-cell fusion. Additionally, this peptide at low nanomolar concentrations inhibits epithelial cell infection by intact virus. Shorter gp42 peptides spanning the two functional regions identified by deletion mutagenesis had little or no binding to soluble gH/gL and were also unable to inhibit epithelial cell fusion, nor could they complement gp42 deletion mutants in B-cell fusion. These studies identify key residues of gp42 that are essential for gH/gL binding and membrane fusion activation, providing a nanomolar inhibitor of EBV-mediated membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号