首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel glycolipid of mass 1935 and a phospholipid of mass 1522 are the main residual lipids (along with traces of PGP-Me, S-TGD-1, and PG) specifically associated with "delipidated" bacteriorhodopsin fractions BR I and BR II, prepared by Triton X-100 treatment of purple membrane (PM), from a genetically engineered strain (L33) of Halobacterium salinarum, and chromatography on phenyl-Sepharose CL-4B. The novel glycolipid and phospholipid are components of the PM matrix not previously described. The TLC isolated and purified novel glycolipid and phospholipid were shown, by chemical degradation, mass spectrometry, and NMR analyses, to have the structure, respectively, of a phosphosulfoglycolipid, 3-HSO(3)-Galp-beta1,6Manp-alpha1,2Glcp-alpha1,1-[sn-2, 3-di-O-phytanylglycerol]-6-[phospho-sn-2,3-di-O-phytanylglycero l], and of a glycerol diether analogue of bisphosphatidylglycerol (cardiolipin), sn-2,3-di-O-phytanyl-1-phosphoglycerol-3-phospho-sn-2, 3-di-O-phytanylglycerol.  相似文献   

2.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

3.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

4.
Various aspects of membrane solubilization by the Triton X-series of nonionic detergents were examined in pig liver mitochondrial membranes. Binding of Triton X-100 to nonsolubilized membranes was saturable with increased concentrations of the detergent. Maximum binding occurred at concentrations exceeding 0.5% Triton X-100 (w/v). Solubilization of both protein and phospholipid increased with increasing Triton X-100 to a plateau which was dependent on the initial membrane protein concentration used. At low detergent concentrations (less than 0.087% Triton X-100, w/v), proteins were preferentially solubilized over phospholipids. At higher Triton X-100 concentrations the opposite was true. Using the well-defined Triton X-series of detergents, the optimal hydrophile-lipophile balance number (HLB) for solubilization of phosphatidylglycerophosphate synthase (EC 2.7.8.5) was 13.5, corresponding to Triton X-100. Activity was solubilized optimally at detergent concentrations between 0.1 and 0.2% (w/v). The optimal protein-to-detergent ratio for solubilization was 3 mg protein/mg Triton X-100. Solubilization of phosphatidylglycerophosphate synthase was generally better at low ionic strength, though total protein solubilization increased at high ionic strength. Solubilization was also dependent on pH. Significantly higher protein solubilization was observed at high pH (i.e., 8.5), as was phosphatidylglycerophosphate synthase solubilization. The manipulation of these variables in improving the recovery and specificity of membrane protein solubilization by detergents was examined.  相似文献   

5.
11 beta-hydroxysteroid dehydrogenase (11-HSD, EC 1.1.1.146) from rat renal cortex microsomes was solubilized using several detergents, the most effective being Zwittergent 3-10 and Triton X-100. The activity ratio oxidation/reduction of the reversible reaction corticosterone in equilibrium 11-dehydrocoticosterone varied depending on the detergent used. We attribute this variation to direct effects of different detergents on enzyme kinetics. In contrast, comparable results obtained with liver 11-HSD have been attributed to the possibility of spatially separated 11-oxidase and 11-reductase activities. In order to test whether renal 11-HSD represents a uniform oxido-reductase as generally assumed, or a dual enzyme system as has been recently proposed an attempt was made to characterize 11-HSD solubilized from renal microsomal fractions using isoelectric focusing (IEF). When 11-HSD was extracted with 1% Triton X-100 (= partially solubilized fraction) a heterogenous peak pattern was obtained. In contrast, IEF of 11-HSD extracted with 10% Triton X-100 (= delipidated fraction) resulted in a single peak at about pH 5.9 with both oxidative and reductive activity at practically identical positions within the gels. From this observation we conclude that the degree of detergent solubilization of a membrane bound protein affects its amphoteric properties and that removal of membranous lipids is a prerequisite for the analysis of its behaviour. Since the more delipidated fraction of 11-HSD revealed only one activity peak the data are compatible with the uniform enzyme concept since oxidative and reductive activities of renal cortical 11-HSD could not be separated.  相似文献   

6.
Circular dichroic (CD) spectra of three related protein pigments from Halobacterium halobium, halorhodopsin (HR), bacteriorhodopsin (BR), and sensory rhodopsin I (SR-I), are compared. In native membranes the two light-driven ion pumps, HR and BR, exhibit bilobe circular dichroism spectra characteristic of exciton splitting in the region of retinal absorption, while the phototaxis receptor, SR-I, exhibits a single positive band centered at the SR-I absorbance maximum. This indicates specific aggregation of protein monomers of HR, as previously noted [Sugiyama, Y., & Mukohata, Y. (1984) J. Biochem. (Tokyo) 96, 413-420], similar to the well-characterized retinal/retinal exciton interaction in the purple membrane. The absence of this interaction in SR-I indicates SR-I is present in the native membrane as monomers or that interactions between the retinal chromophores are weak due to chromophore orientation or separation. Solubilization of HR and BR with nondenaturing detergents eliminates the exciton coupling, and the resulting CD spectra share similar features in all spectral regions from 250 to 700 nm. Schiff-base deprotonation of both BR and HR yields positive CD bands near 410 nm and shows similar fine structure in both pigments. Removal of detergent restores the HR native spectrum. HR differs from BR in that circular dichroic bands corresponding to both amino acid and retinal environments are much more sensitive to external salt concentration and pH. A theoretical analysis of the exciton spectra of HR and BR that provides a range of interchromophore distances and orientations is performed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The properties of Ca(2+)-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C(12)E(8)) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca(2+)-ATPase with a greater specific activity than solubilization with C(12)E(8) or Triton X-100. DHPC was determined to be superior to C(12)E(8); while that the C(12)E(8) was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca(2+)-ATPase retained the E1Ca-E1*Ca conformational transition as that observed for native microsomes; whereas the C(12)E(8) and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca(2+) transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C(12)E(8) and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca(2+)-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C(12)E(8) and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca(2+) uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca(2+)-ATPase retained more organized and native secondary conformation compared to C(12)E(8) and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C(12)E(8) and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca(2+)-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C(12)E(8) and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein-lipid interactions in the function of the membrane-bound enzyme.  相似文献   

8.
—Highly purified fractions of synaptic vesicles were prepared from rat cerebrum or cerebral cortex by density gradient centrifugation. Treatment of synaptic vesicle fractions by autoincubation, freeze-thawing and sonication in an isotonic alkaline-salt medium or in 0·1-0·3% (v/v) Triton X-100 released increasing quantities of synaptic vesicle protein and phospholipid into solution. When the soluble synaptic vesicle proteins were extracted with 0·1% (v/v) Triton X-100, the insoluble residue consisted mostly of 5–8 nm-thick membranes resembling the limiting membranes of intact synaptic vesicles. This finding, together with other considerations, suggested that the soluble proteins and accompanying phospholipids originated from the interior of the synaptic vesicles. A 0·3% (v/v) Triton X-100 extract of synaptic vesicle was fractionated by ultracentrifugal flotation and dialysis into three lipoprotein fractions: a low density lipoprotein (d < 1·21 g/ml), a high density lipoprotein (d = 1·21–1·35 g/ml) and a very high density lipoprotein (d > 1·35 g/ml). The phospholipid contents of the low, high and very high density lipoprotein fractions were 0·74, 0·38 and 0·20 mg/mg of protein, respectively. All three apolipoproteins had a high ratio of acidic to basic, and of polar to nonpolar, amino acids, and were rich in glycine, alanine and serine. Polyacrylamide gel electrophoresis of the alkaline-salt and Triton X-100 extracts of synaptic vesicles at pH 8·8 resolved a single anionic component which stained for protein, lipid (Sudan black B; iodine) and anionic groups (acridine orange). Polyacrylamide gel electrophoresis of synaptic vesicle extracts at pH 2·7 in 5 m urea and 0·25% (v/v) Triton X-100 resolved about 20 protein components. However, the protein profiles of electropherograms of the Triton X-100 and alkaline-salt extracts differed in certain respects, suggesting that these media to some extent solubilized different proteins. However, most of the protein bands in electropherograms of the Triton X-100 and alkaline-salt extracts also stained for lipid and anionic groups. In addition, two lipoprotein components in the alkaline-salt extract and four in the Triton X-100 extract contained carbohydrate. Isoelectric focusing of synaptic vesicle extracts resolved 6–8 protein fractions. The major fraction in Triton X-100 and alkaline-salt extracts had an apparent isoelectric point of approximately 4·2 and contained 0·24 mg of phospholipid per mg of protein. Soluble synaptic vesicle proteins released by incubating, freeze-thawing and sonicating in the alkaline-salt medium, and protein fractions of the latter obtained by electrofocusing had an absorption maximum of 260–265 nm which was enhanced in a cold 0·5 n perchloric acid extract, an observation suggesting the presence of a bound nucleotide. These findings demonstrate that rat brain synaptic vesicles contain a heterogenous array of soluble acidic lipoproteins which vary in buoyant density, lipid content, amino acid and carbohydrate composition and electrophoretic mobility in polyacrylamide gels. These acidic lipoproteins apparently comprise the bulk of the macromolecular contents of synaptic vesicles and probably serve as ‘carrier’ proteins for the binding and sequestration of the neurotransmitters.  相似文献   

9.
The vacuolar ATPase was purified from a tonoplast-enriched membrane fraction from barley (Hordeum vulgare cv CM72) roots. The membranes were solubilized with Triton X-100 and the membrane proteins were separated by chromatography on Sephacryl S-400 followed by fast protein liquid chromatography on a Mono-Q column. The purified vacuolar ATPase was inhibited up to 90% by KNO3 or 80% by dicyclohexylcarbodiimide (DCCI). The ATPase was resolved into polypeptides of 115, 68, 53, 45, 42, 34, 32, 17, 13, and 12 kDa. An additional purification step of centrifugation on a glycerol gradient did not result in loss of any polypeptide bands or increased specific activity of the ATPase. Antibodies against the purified holoenzyme inhibited proton transport by the native ATPase. Two peaks of solubilized Ca(2+)-ATPase were obtained from the Sephacryl S-400 column. A peak of Ca(2+)-ATPase copurified with the vacuolar ATPase during all of the purification steps and was inhibited by NO3- and DCCI. It is proposed that this Ca(2+)-ATPase is a partial reaction of the plant vacuolar ATPase. The second Ca(2+)-ATPase was greatly retarded on the Sephacryl S-400 column and eluted after the main protein peak. It was not inhibited significantly by NO3- or DCCI. The second Ca(2+)-ATPase is a major component of ATP hydrolysis by the native membranes.  相似文献   

10.
Lysophosphatidylcholine (contrary to Lubrol WX, Triton X-100, digitonine and deoxycholate) solubilizes hamster brown fat mitochondrial glycerol-3-phosphate dehydrogenase without inactivation. Optimal ratio of lysophosphatidylcholine and membrane protein for solubilization of the enzyme was found to be 0.25 mg of lysophosphatidylcholine per mg protein. The activity of solubilized enzyme, however, was not affected by low concentrations of Lubrol WX, Triton X-100, digitonine, Zwittergent TM 314. Deoxycholate exhibited a pronounced inactivating effect. One-dimensional immunoelectrophoresis of the solubilized membrane proteins revealed 10 protein bands, 3-4 of which exhibited the enzyme activity. Two-dimensional immunoelectrophoresis revealed only a single main band of glycerol-3-phosphate dehydrogenase. This technique thus appears to be the best means for the identification of glycerol-3-phosphate dehydrogenase in the mixture of solubilized membrane proteins and for concentration of the enzyme activity in one major precipitating band.  相似文献   

11.
It was shown that, among ionic and nonionic detergents tested, only Triton X-100 was able to stimulate the activity of rat liver phosphatidylserine decarboxylase, whereas other detergents were without effect or were inhibitory. The solubilization procedure of phosphatidylserine decarboxylase from mitochondrial membranes with Triton X-100 was elaborated. The dependence of the solubilized decarboxylase on the Triton X-100 to phosphatidylserine ratio and the inhibitory effect of Triton X-100 at its molar ratio to phospholipid higher than 5.6 was observed. No divalent cation requirement and no dependence of the ionic strength for the solubilized enzyme were observed. Kinetic parameters were determined.  相似文献   

12.
Isolated plasma membranes of thymic and splenic lymphocytes from unimmunized and immunized rats of the inbred ACI and F344 strains were analyzed for chemical and enzymatic composition, for membrane protein patterns by polyacrylamide gel electrophoresis and for membrane-associated immunoglobulins. After immunization, the thymic and splenic lymphocyte membranes from F344 rat contained less carbohydrate and higher phospholipid contents than control animals. In both ACI and F344 inbred rat strains the membrane phospholipid to cholesterol weight ratio increased significantly after immunization. The electrophoretic patterns of solubilized membrane proteins and of iodinated external membrane proteins were similar in unimmunized and immunized animals.When thymic and splenic lymphocytes of normal or immunized animals were surface radioiodinated, solubilized in Triton X-100, NP-40 or 10 M urea in 1.5 M acetic acid and analyzed by immunoprecipitation, labeled IgM immunoglobulin was recovered from thymic lymphocytes but both labeled IgG and IgM were recovered from splenic lymphocytes. However, when unlabeled isolated plasma membranes were solubilized in 1% Triton X-100 and analyzed by immunodiffusion in agarose gels, both IgG and IgM were identified in thymic and splenic cells.  相似文献   

13.
The properties of Ca2+-ATPase purified and reconstituted from bovine pulmonary artery smooth muscle microsomes {enriched with endoplasmic reticulum (ER)} were studied using the detergents 1,2-diheptanoyl-sn-phosphatidylcholine (DHPC), poly(oxy-ethylene)8-lauryl ether (C12E8) and Triton X-100 as the solubilizing agents. Solubilization with DHPC consistently gave higher yields of purified Ca2+-ATPase with a greater specific activity than solubilization with C12E8 or Triton X-100. DHPC was determined to be superior to C12E8; while that the C12E8 was determined to be better than Triton X-100 in active enzyme yields and specific activity. DHPC solubilized and purified Ca2+-ATPase retained the E1Ca−E1*Ca conformational transition as that observed for native microsomes; whereas the C12E8 and Triton X-100 solubilized preparations did not fully retain this transition. The coupling of Ca2+ transported to ATP hydrolyzed in the DHPC purified enzyme reconstituted in liposomes was similar to that of the native micosomes, whereas that the coupling was much lower for the C12E8 and Triton X-100 purified enzyme reconstituted in liposomes. The specific activity of Ca2+-ATPase reconstituted into dioleoyl-phosphatidylcholine (DOPC) vesicles with DHPC was 2.5-fold and 3-fold greater than that achieved with C12E8 and Triton X-100, respectively. Addition of the protonophore, FCCP caused a marked increase in Ca2+ uptake in the reconstituted proteoliposomes compared with the untreated liposomes. Circular dichroism analysis of the three detergents solubilized and purified enzyme preparations showed that the increased negative ellipticity at 223 nm is well correlated with decreased specific activity. It, therefore, appears that the DHPC purified Ca2+-ATPase retained more organized and native secondary conformation compared to C12E8 and Triton X-100 solubilized and purified preparations. The size distribution of the reconstituted liposomes measured by quasi-elastic light scattering indicated that DHPC preparation has nearly similar size to that of the native microsomal vesicles whereas C12E8 and Triton X-100 preparations have to some extent smaller size. These studies suggest that the Ca2+-ATPase solubilized, purified and reconstituted with DHPC is superior to that obtained with C12E8 and Triton X-100 in many ways, which is suitable for detailed studies on the mechanism of ion transport and the role of protein–lipid interactions in the function of the membrane-bound enzyme.  相似文献   

14.
Ultraviolet-visible spectroscopy has been used to follow the solubilization of the dark-adapted purple membrane of Halobacterium halobium by Triton X-100. Turbidity of purple membrane fragments and absorbance of bacteriorhodopsin variations during continuous addition of detergent give solubilization profiles exhibiting several break points corresponding to different equilibrium stages of the solubilization process. The present method allows the determination of the detergent to protein+lipid ratio in mixed aggregates at the corresponding break points. It was concluded that, when performed systematically, this technique is a very convenient and powerful tool for the quantitative study of biomembrane-to-micelle transition.  相似文献   

15.
Light-induced conductivity transients have been observed in preparations of bacteriorhodopsin (bR) in phospholipid vesicles at high lipid/protein molar ratios. Under these conditions, bR is known to be dissolved as monomers in the lipid bilayer. The conductivity transients are due mostly to proton movements, including a trans-membrane component. Kinetic resolution of the conductance change due to proton ionophore-induced leakage through the vesicle membrane provides a novel method to quantitate the number of protons pumped, even in heavily buffered solutions. Some of the transient signal seen on the timescale of the bR photocycle is due to nonproton ions but is smaller than that observed in native purple membranes at pH 7 in low salt. Furthermore, when the pH is raised to 8, the very large transient nonproton ion release seen in purple membranes is not seen in the vesicles. This correlates well with previous results (Marinetti, T., and D. Mauzerall, 1986, Biophys. J., 50:405-415), in which the nonproton ion movements observed with native purple membranes were abolished by solubilization in Triton X-100. Thus, the nonproton ion release appears to be a property of bR in the native aggregated state.  相似文献   

16.
Physical and chemical data are reported for highly purified native streptokinase (staphylokinase, EC 3.4.99.22) (Kabikinase) and streptokinase treated with an alkaline agent (altered streptokinase). The mol. wts. were similar and were determined to be 50 200 by sedimentation equilibrium methods, polyacrylamide gradient gel electrophoresis and sodium dodecylsulphate-polyacrylamide gel electrophoresis. The sedimentation coefficient so20,w of native and altered streptokinase was found to be 3.37 S. The frictional ratio and the absorptivity (A1%1cm) at 280 nm of native streptokinase was found to be 1.29 and 7.5, respectively. Native streptokinase showed essentially a single band in the isoelectro-focusing pattern (pI 5.2), while altered streptokinase showed at least two separate bands. Polyacrylamide gel electrophoresis in the presence of Triton X-100 exhibited one band for native streptokinase but altered streptokinase showd two bands. At pH 12 the biological and immunological activity of streptokinase was markedly decreased in a time-dependent reaction. The amino-terminal amino acid of the two streptokinase forms was isoleucine and the carboxyl-terminal amino acid of native streptokinase was tyrosine. Peptide analysis showed that some peptides in altered streptokinase exhibited higher mobility compared to native streptokinase. The data suggest that streptokinase undergoes a conformational change when incubated in alkaline media, but no simultaneous loss of peptides was observed.  相似文献   

17.
Endoglycoceramidase catalyzes the hydrolysis of the linkage between oligosaccharides and ceramides of various glycosphingolipids. We found that a bacterial strain Corynebacterium sp., isolated from soil, produced endoglycoceramidase both intracellularly and extracellularly. The intracellular enzyme bound to the cell membrane was solubilized with 1% Triton X-100 and purified to homogeneity about 170-fold with 60% recovery. The molecular mass of the enzyme was approximately 65 kDa. The enzyme is most active at pH 5.5-6.5 and stable at pH 3.5-8.0. Various neutral and acidic glycosphingolipids were hydrolyzed by the enzyme in the presence of 0.1% Triton X-100. Ganglio- and lacto-type glycosphingolipids were readily hydrolyzed, but globo-type glycosphingolipids were hydrolyzed slowly.  相似文献   

18.
Partial purification of the acyl-CoA elongase of Allium porrum leaves   总被引:2,自引:0,他引:2  
Acyl-CoA elongase has been partially purified from leek (Allium porrum L.) epidermal cells. The microsomal elongase is first solubilized by Triton X-100. The solubilized proteins are then submitted to anion exchange chromatography on DEAE-cellulose and, finally, to gel filtration on Ultrogel 34 AcA. The purification of the elongase activity is accompanied by the enrichment in three major protein bands of 59, 61, and 65 kDa. The partially purified elongase is highly delipidated (about 10 mol lipid/mol of 60- to 65-kDa protein) and phosphatidylserine and phosphatidylethanolamine account respectively for 60 and 40% of the remaining phospholipids. The partially purified elongase retains some activities associated with fatty acid biosynthesis. The overall activity is strongly stimulated by the addition of exogenous lipids. In the presence of a mixture of PS, PE, and PC the C18-CoA elongase activity is increased more than sixfold. The Km value of stearoyl-CoA, in the presence of lipid vesicles, was determined to be 1.7 microM.  相似文献   

19.
The influence of plasma membrane lipid components on the activity of the H+-ATPase has been studied by determining the effect of surfactants on membrane lipids and ATPase activity of oat (Avena sativa L.) root plasma membrane vesicles purified by a two-phase partitioning procedure. Triton X-100, at 25 to 1 (weight/weight) Triton to plasma membrane protein, an amount that causes maximal activation of the ATPase in the ATPase assay, extracted 59% of the membrane protein but did not solubilize the bulk of the ATPase. The Triton-insoluble proteins had associated with them, on a micromole per milligram protein basis, only 14% as much phospholipid, but 38% of the glycolipids and sterols, as compared with the native membranes. The Triton insoluble ATPase could still be activated by Triton X-100. When solubilized by lysolecithin, there were still sterols associated with the ATPase fraction. Free sterols were found associated with the ATPase in the same relative proportions, whether treated with surfactants or not. We suggest that surfactants activate the ATPase by altering the hydrophobic environment around the enzyme. We propose that sterols, through their interaction with the ATPase, may be essential for ATPase activity.  相似文献   

20.
Extraction of red beet root plasma membranes with the detergent Triton X-100 at a level of 2.0% (weight/volume) resulted in the depletion of over 90% of total membrane phospholipid and the reduction of glucan synthase activity by 80 to 90%. Reconstitution of the delipidated Triton X-100, 100,000g fraction in the presence of phospholipids restored glucan synthase activity. The most effective phospholipid was phosphatidyl-ethanolamine, which restored 110 to 144% of the original activity at 0.5% (weight/volume). Glucan synthase in the phospholipid-reactivated Triton X-100-treated fraction was enriched 9-fold in specific activity relative to microsomal membranes but was unstable in digitonin. These results support the hypothesis that glucan synthase activity is regulated by its phospholipid environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号