首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-dihydroxyvitamin D3 and 26-homo-delta 22-1 alpha,25(R)-dihydroxyvitamin D3 were compared with the native hormone, 1,25-dihydroxyvitamin D3, and with other vitamin D3 derivatives, in inhibition of cell growth, induction of phenotypic differentiation, and c-myc mRNA reduction of HL-60 cells. The degree of inhibition in cell growth caused by 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 was the greatest followed by 26-homo-delta 22-1 alpha,25(R)-(OH)2D3. The ability to reduce NBT was parallel to that to inhibit cellular proliferation. 26-homo-delta 22-1 alpha,25(S)-(OH)2D3, 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, 24-homo-24-F2-1 alpha,25-(OH)2D3, and 1 alpha,24(R)-(OH)2-26-Cl-D3 were more active than 1 alpha,25-(OH)2D3 in the induction of OK-M1+ and OK-Mo-2+ HL-60 cells. Using two color flow cytometric analysis, the percentages of OK-M5(+)- and OK-DR(+)-HL-60 cells were 33% in the treatment with 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 plus interferon-gamma (IFN-gamma) but 14% in the treatment with 1 alpha,25-(OH)2D3 plus IFN-gamma. 26-Homo-delta 22-1 alpha,25(S)-(OH)2D3 has an inhibitory effect on c-myc reduction in treated HL-60 cells. These results suggest that the novel vitamin D3 derivatives, 26-homo-delta 22-1 alpha,25(S)-(OH)2D3 and 26-homo-delta 22-1 alpha,25(R)-(OH)2D3, have preferential activity in inducing phenotypic differentiation and in inducing cell proliferation related c-myc mRNA activity.  相似文献   

2.
A human myeloid leukemia cell line [HL-60] could be induced to differentiate into mature myeloid cells by 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the active form of vitamin D3. At 10?10–10?8 M, 1α,25(OH)2D3 suppressed cell growth in a dose-dependent manner and markedly induced phagocytosis and C3 rosette formation. The potency of 1α,25(OH)2D3 in inducing differentiation was nearly equivalent to that of known synthetic inducers such as dimethyl sulfoxide, actinomycin D or a phorbol ester (12-o-tetra-decanoyl-phorbol-13-acetate). These results clearly indicate that 1α,25(OH)2D3, besides its well known biological effect in enhancing intestinal calcium transport and bone mineral mobilization activities, is involved in the cell grwoth and differentiation of HL-60 cells.  相似文献   

3.
We have investigated the possible involvement of phosphoinositide turnover in the keratinocyte differentiation induced by 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. The mass contents of inositol 1,4,5-trisphosphate and 1,2-diacylglycerol and intracellular calcium level were measured in murine keratinocytes stimulated with 1 alpha,25(OH)2D3 or its derivatives. Although production of these second messengers was enhanced, there were no significant differences in time- and dose-dependences between 1 alpha,25(OH)2D3 and its derivatives. These vitamin D3 compounds promoted the translocation from the cytosol to membrane of protein kinase C (PKC). Despite such common profiles in the early signal transduction parameters, only 1 alpha,25(OH)2D3 induced formation of a cornified envelope characteristic of keratinocyte differentiation. Down-regulation of PKC by prolonged pretreatment with PDBu or inhibition of the enzyme with H-7 caused marked suppression of 1 alpha,25(OH)2D3-induced formation of cornified envelopes. These findings imply that PKC is necessary but not sufficient for the onset of terminal differentiation by 1 alpha,25(OH)2D3, and also that another as yet unspecified signal generated specifically by the active vitamin D3 is required for keratinocyte differentiation.  相似文献   

4.
Vitamin D compounds added to the culture medium induce differentiation of human myeloid leukemia cells (HL-60 cells) by binding to a specific cytosol receptor protein. This system provides a biologically relevant and technically simple assay to examine the relationship between molecular structure and biological activity of vitamin D compounds. Using this culture system, the biological activity of 24,24-F2-1 alpha,25(OH)2D3 and 1 alpha,25(OH)2D3-26,23-lactone was assayed. 24,24-F2-1 alpha,25(OH)2D3 was four to seven times more potent than 1 alpha,25(OH)2D3 in inducing phagocytosis and C3 rosette formation of HL-60 cells, though both compounds bound equally well to the cytosol receptor, suggesting that the defuorination at the 24-carbon position may stimulate membrane permeability of the compound. 1 alpha,25(OH)2D3-26,23-lactone, on the other hand, was only 1/200th as active as 1 alpha,25(OH)2D3. The binding affinity of the lactone for the cytosol receptor was identical with that of 1 alpha (OH)D3, suggesting that the lactone formation between the 26 and 23 positions masks the function of the 25-hydroxyl group. The binding affinity of vitamin D3 derivatives to the specific cytosol receptor of HL-60 cells was well correlated with that of intestinal cytosol protein specifically bound to 1 alpha,25(OH)2D3.  相似文献   

5.
In cultured Solanum glaucophyllum we have recently described the operation of a light-independent pathway of 1alpha,25-dihydroxy-vitamin D(3) (1alpha,25(OH)(2)D(3)) biosynthesis which involves similar intermediates as in vertebrates. In this work we investigated factors influencing the formation of 1alpha,25(OH)(2)D(3) and related sterols in S. glaucophyllum grown in vitro in darkness. Callus tissue and cells cultured in Murashige and Skoog medium in the absence of light were employed. Lipids were extracted with chloroform-methanol. The remaining water soluble fraction was incubated with beta-glucosidase to release vitamin D(3) compounds from their glycoconjugated derivatives followed by organic solvent extraction. Vitamin D(3) derivatives were isolated by Sephadex LH-20 and high-performance liquid chromatography (HPLC). HPLC or competitive protein binding assays with intestine 1alpha,25(OH)(2)D(3) receptor and serum vitamin D binding protein were used to quantify the metabolites. The levels of 1alpha,25(OH)(2)D(3) in calli varied according to the tissue explant origin, e.g. stem>leaf>fruit. For all organs, the metabolite was mainly present as free sterol (>80% of total). There were larger amounts of 25(OH)D(3) than 1alpha,25(OH)(2)D(3). It was found that Ca(2+), auxin and kinetin are important factors upregulating 1alpha,25(OH)(2)D(3) synthesis in S. glaucophyllum tissue and cells. Irradiation with UV light increased vitamin D(3) but not 1alpha,25(OH)(2)D(3) levels. In agreement with these results, incubation of cells with [3H]25(OH)D(3) revealed a low conversion rate to [3H]1alpha,25(OH)(2)D(3). The operation of a light-dependent pathway formation of vitamin D(3) coupled to higher expression of 25(OH)D(3)-1alpha-hydroxylase may account for the large concentrations of 1alpha,25(OH)(2)D(3) normally found in differentiated field-grown plants.  相似文献   

6.
Monocytic differentiation-inducing activity of 26,26,26,27,27,27-hexafluoro-1 alpha,25-dihydroxyvitamin D3 [26,27-F6-1 alpha,25-(OH)2D3] was re-evaluated in human promyelocytic leukemia (HL-60) cells in serum-supplemented or serum-free culture. The order of in vitro potency for reducing nitroblue tetrazolium (NBT) was 26,27-F6-1 alpha,25-(OH)2D3 greater than 1 alpha, 25-dihydroxyvitamin D3 [1 alpha,25-(OH)2D3] = 26,26,26,27,27,27-F6-1 alpha,23(S), 25-trihydroxyvitamin D3 [26,27-F6-1 alpha,23(S), 25-(OH)3D3] under serum-supplemented culture conditions, whereas the order was 1 alpha, 25-(OH)2D3 = 26,27-F6-1 alpha,25-(OH)2D3 greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 under serum-free culture conditions. This rank order for differentiation-inducing activity under serum-free culture conditions correlated well with the binding affinity of these analogs for vitamin D3 receptor of HL-60 cells. The order of relative % binding affinity for the vitamin D-binding protein in fetal calf serum was 1 alpha,25-(OH)2D3 (100%) much greater than 26,27-F6-1 alpha,25-(OH)2D3 (5.1%) greater than 26,27-F6-1 alpha,23(S), 25-(OH)3D3 (less than 1%). These results suggest that serum vitamin D-binding proteins apparently modulate monocytic differentiation of HL-60 cells by 26,27-F6-1 alpha,25-(OH)2D3 under serum-supplemented culture conditions.  相似文献   

7.
Growth of 3T3-L1 cells was inhibited by 10(-10)-10(-7)M of 1 alpha,25-dihydroxy vitamin D3 [1 alpha,25(OH)2D3] in a dose- and time-dependent manner. The potency of 1 alpha,25(OH)2D3 in inducing differentiation was low, since 3T3-L1 cells cultured with 1 alpha,25(OH)2D3 did not become mature adipocyte-like cells but were changed to slightly rounded cells containing small droplet-like substances in the cytoplasm and glycerophosphate dehydrogenase (sn-glycerol-3-phosphate: NAD+2-oxidoreductase, EC 1.1.1.8), the marker enzyme of differentiation to adipocyte, did not increase. These results together with the natural occurrence of this vitamin indicate that 1 alpha,25(OH)2D3 may play an important role in the cell growth and differentiation besides such known action as intestinal calcium transport and bone mineral mobilization.  相似文献   

8.
9.
Biological activity of 24-epi-1 alpha,25-dihydroxyvitamin D-2 (24-epi-1,25(OH)2D2) and 1 alpha,25-dihydroxyvitamin D-7 (1,25(OH)2D7), the 22,23-dihydro derivative of the former compound, was investigated. Both of the vitamin D derivatives stimulated intestinal calcium transport and calcium mobilization from bones in rats; however, the effect was about 50% of that of 1 alpha,25-dihydroxyvitamin D-3 (1,25(OH)2D3). On the other hand, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 inducement of HL-60 human leukemia cell differentiation was comparable to that of 1,25(OH)2D3. Accordingly, the differentiation-inducing activity of 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 was much greater than their ability to stimulate calcium metabolism. In contrast to 1,25(OH)2D3, 24-epi-1,25(OH)2D2 and 1,25(OH)2D7 exerted little hypercalcemic activity in mice. These results suggest that both vitamin D derivatives will be useful as anti-tumor agents.  相似文献   

10.
1alpha,25-Dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], a vitamin D receptor (VDR) ligand, regulates calcium homeostasis and also exhibits noncalcemic actions on immunity and cell differentiation. In addition to disorders of bone and calcium metabolism, VDR ligands are potential therapeutic agents in the treatment of immune disorders, microbial infections, and malignancies. Hypercalcemia, the major adverse effect of vitamin D(3) derivatives, limits their clinical application. The secondary bile acid lithocholic acid (LCA) is an additional physiological ligand for VDR, and its synthetic derivative, LCA acetate, is a potent VDR agonist. In this study, we found that an additional derivative, LCA propionate, is a more selective VDR activator than LCA acetate. LCA acetate and LCA propionate induced the expression of the calcium channel transient receptor potential vanilloid type 6 (TRPV6) as effectively as that of 1alpha,25-dihydroxyvitamin D(3) 24-hydroxylase (CYP24A1), whereas 1,25(OH)(2)D(3) was more effective on TRPV6 than on CYP24A1 in intestinal cells. In vivo experiments showed that LCA acetate and LCA propionate effectively induced tissue VDR activation without causing hypercalcemia. These bile acid derivatives have the ability to function as selective VDR modulators.  相似文献   

11.
We have investigated the mechanism(s) by which dexamethasone inhibit DMSO-induced Friend erythroleukemia cell differentiation in vitro. In particular, we examined the effects of dexamethasone on (a) the early events of differentiation such as cell volume alterations and 'memory response' and (b) the onset of biochemical events associated with terminal erythroid cell differentiation. By analysing kinetics of commitment of Friend cells to terminal erythroid differentiation on a clonal basis, we have observed that dexamethasone inhibited the completion of the latent period (time elapsed prior to commitment) and impaired "memory" (ability to inducer-treated cells to continue differentiation after a discontinuous exposure to inducer). Treatment of Friend cells with dexamethasone did not prevent the occurrence of DMSO-induced alterations in cell volume. However, dexamethasone treatment prevented a series of biochemical events associated with terminal Friend cell differentiation. These include the decrease in the rate of both cytoplasmic and nuclear RNA synthesis as well as the induction of cytidine deaminase activity and hemoglobin synthesis. These data indicate that the dexamethasone-sensitive process(es) operate during the early stages of Friend cell differentiation and that they are responsible for the inhibition of terminal erythroid maturation. These dexamethasone-sensitive processes, however, appear to be different from those regulating cell volume alterations during the early steps of DMSO-induced Friend cell differentiation.  相似文献   

12.
13.
The idea that vitamin D must function at the bone site to promote bone mineralization has long existed since its discovery as an anti-rachitic agent. However, the definite evidence for this is still lacking. In contrast, much evidence has accumulated that 1 alpha,25(OH)2D3 in involved in bone resorption. 1 alpha,25(OH)2D3 tightly regulates differentiation of osteoclast progenitors into osteoclasts. Osteoclast progenitors have been thought to belong to the monocyte-macrophage lineage. 1 alpha,25(OH)2D3 greatly stimulates differentiation and activation of mononuclear phagocytes. Recent reports have indicated that differentiation of mononuclear phagocytes into osteoclasts is strictly regulated by osteoblastic cells, the process of which is also stimulated by 1 alpha,25(OH)2D3. In the differentiation of mononuclear phagocytes into osteoclasts, the target cells for 1 alpha,25(OH)2D3 appear to be osteoblastic stromal cells. Osteoblastic cells produce several proteins such as BGP, MGP, osteopontin and the third component of complement (C3) in response to the vitamin. They appear to be somehow involved in osteoclast differentiation and functions. Thus, 1 alpha,25(OH)2D3 seems to be involved in the differentiation of osteoclast progenitors into osteoclasts directly and also by an indirect mechanism involving osteoblastic cells. The precise role of osteoblastic cells in osteoclast development has to be elucidated in the future.  相似文献   

14.
15.
Vitamin D and bone   总被引:5,自引:0,他引:5  
It is now well established that supraphysiological doses of 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)] stimulate bone resorption. Recent studies have established that osteoblasts/stromal cells express receptor activator of NF-kappaB ligand (RANKL) in response to several bone-resorbing factors including 1alpha,25(OH)(2)D(3) to support osteoclast differentiation from their precursors. Osteoclast precursors which express receptor activator of NF-kappaB (RANK) recognize RANKL through cell-to-cell interaction with osteoblasts/stromal cells, and differentiate into osteoclasts in the presence of macrophage-colony stimulating factor (M-CSF). Osteoprotegerin (OPG) acts as a decoy receptor for RANKL. We also found that daily oral administration of 1alpha,25(OH)(2)D(3) for 14 days to normocalcemic thyroparathyroidectomized (TPTX) rats constantly infused with parathyroid hormone (PTH) inhibited the PTH-induced expression of RANKL and cathepsin K mRNA in bone. The inhibitory effect of 1alpha,25(OH)(2)D(3) on the PTH-induced expression of RANKL mRNA occurred only with physiological doses of the vitamin. Supraphysiological doses of 1alpha,25(OH)(2)D(3) increased serum Ca and expression of RANKL in vivo in the presence of PTH. These results suggest that the bone-resorbing activity of vitamin D does not occur at physiological dose levels in vivo. A certain range of physiological doses of 1alpha,25(OH)(2)D(3) rather suppress the PTH-induced bone resorption in vivo, supporting the concept that 1alpha,25(OH)(2)D(3) or its derivatives are useful for the treatment of various metabolic bone diseases such as osteoporosis and secondary hyperparathyroidism.  相似文献   

16.
Analogs of 1 alpha,25-dihydroxyvitamin D3 (1 alpha,25-(OH)2D3) with substitutions on C-11 were synthesized. Small apolar substitutions (11 alpha-methyl, 11 alpha-fluoromethyl) did not markedly decrease the affinity for the vitamin D receptor, but larger (11 alpha-chloromethyl or 11 alpha- or 11 beta-phenyl) or more polar substitutions (11 alpha-hydroxymethyl, 11 alpha-(2-hydroxyethyl] decreased the affinity to less than 5% of that of 1 alpha,25-OH)2D3. Their affinity for the vitamin D-binding protein, however, increased up to 4-fold. The biological activity of 11 alpha-methyl-1 alpha,25-(OH)2D3 closely resembled that of the natural hormone on normal and leukemic cell proliferation and bone resorption, whereas its in vivo effect on calcium metabolism of the rachitic chick was about 50% of that of 1 alpha,25-(OH)2D3. The 11 beta-methyl analog had a greater than 10-fold lower activity. The differentiating effects of the other C-11 analogs on human promyeloid leukemia cells (HL-60) agreed well with their bone-resorbing activity and receptor affinity, but they demonstrated lower calcemic effects in vivo. Large or polar substitutions on C-11 of 1 alpha,25-(OH)2D3 thus impair the binding of the vitamin D receptor but increase the affinity to vitamin D-binding protein. The effects of many C-11-substituted 1 alpha,25-(OH)2D3 analogs on HL-60 cell differentiation exceeded their activity on calcium metabolism.  相似文献   

17.
Shany S  Levy Y  Lahav-Cohen M 《Steroids》2001,66(3-5):319-325
It is well established that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)), the active metabolite of vitamin D, plays a role in regulating proliferation and differentiation of cells, in addition to its classic function in mineral homeostasis. Recent studies have also provided evidence for the involvement of 1alpha,25(OH)(2)D(3) in regulating the immune system. However, therapeutic application of 1alpha,25(OH)(2)D(3) to hyperproliferative diseases such as cancer, or for immunologic purposes, is thwarted by its hypercalcemic activity. In order to overcome this obstacle, analogs of 1alpha,25(OH)(2)D(3) have been produced that exhibit decreased hypercalcemic activity while retaining the growth and immunologic regulating properties. In the present study, the efficacy of 1alpha,24(S)-dihydroxyvitamin D(2) (1alpha,24(S)(OH)(2)D(2)), a vitamin D(2) analog, in restraining cell proliferation was compared to that of 1alpha,25(OH)(2)D(3). In parallel studies, cancer cell lines were grown in increased concentrations (10(-10)-10(-7) M) of each compound for various incubation periods (1-4 days). Growth was assessed by measuring [(3)H]thymidine incorporation. The results revealed that 1alpha,24(S)(OH)(2)D(2) significantly inhibits proliferation to an extent similar to that observed for 1alpha,25(OH)(2)D(3). Moreover, incubating the human leukemia cell line, HL-60, with 1alpha,24(S)(OH)(2)D(2) resulted in an induction of differentiation of these promyelomonocyte cells into monocyte-macrophage-like cells, in a manner similar to that observed with 1alpha,25(OH)(2)D(3). Using a Western procedure, it was also shown that 1alpha,24(S)(OH)(2)D(2) like 1alpha,25(OH)(2)D(3) enhances the expression of vitamin D receptors (VDR) in the rat osteosarcoma cell line, ROS 17/2.8. The expression of tumor necrosis factor (TNF) alpha (TNF-alpha) in human peritoneal macrophages (HPM) obtained from uremic patients treated with continuous ambulatory peritoneal dialysis (CAPD) was found to be regulated by 1alpha,25(OH)(2)D(3) as well as by 1alpha,24(S)(OH)(2)D(2). Incubations of HPM with 1alpha,25(OH)(2)D(3) or 1alpha,24(S)(OH)(2)D(2), have inhibited the expression of TNF-alpha on both mRNA and protein levels. These results suggest that 1alpha,25(OH)(2)D(3) has a role in controlling the rate of inflammation in the peritoneal cavity of CAPD treated patients. Since 1alpha,24(S)(OH)(2)D(2) does not cause hypercalcemia, the present results encourage the possible use of this vitamin D(2) analog in the treatment of cancer and hyper-inflammatory diseases.  相似文献   

18.
We examined the effects of two novel 1alpha,25-dihydroxyvitamin D3-26,23-lactone (1alpha,25-lactone) analogues on human promyelocytic leukemia cell (HL-60) differentiation using the evaluation system of the vitamin D nuclear receptor (VDR)/vitamin D-responsive element (DRE)-mediated genomic action stimulated by 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and its analogues. We found that the 1alpha,25-lactone analogues (23S)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9647), and (23R)-25-dehydro-1alpha-hydroxyvitamin-D3-26,23-lactone (TEI-9648) bound much more strongly to the VDR than the natural (23S, 25R)-1alpha,25(OH)2D3-26,23-lactone, but did not induce cell differentiation even at high concentrations (10(-6) M). Intriguingly, the differentiation of HL-60 cells induced by 1alpha,25(OH)2D3 was inhibited by either TEI-9647 or TEI-9648 but not by the natural lactone. In contrast, retinoic acid or 12-O-tetradecanoylphorbol-13-acetate-induced HL-60 cell differentiation was not blocked by TEI-9647 or TEI-9648. In separate studies, TEI-9647 (10(-7) M) was found to be an effective antagonist of both 1alpha,25(OH)2D3 (10(-8) M) mediated induction of p21(WAF1, CIP1) in HL-60 cells and activation of the luciferase reporter assay in COS-7 cells transfected with cDNA containing the DRE of the rat 25(OH)D3-24-hydroxylase gene and cDNA of the human VDR. Collectively the results strongly suggest that our novel 1alpha,25-lactone analogues, TEI-9647 and TEI-9648, are specific antagonists of 1alpha, 25(OH)2D3 action, specifically VDR/DRE-mediated genomic action. As such, they represent the first examples of antagonists, which act on the nuclear VDR.  相似文献   

19.
As we previously reported, 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) dose-dependently inhibited not only proliferation of undifferentiated murine erythroleukemia (MEL) cells but also activin A-induced erythroid differentiation of MEL cells. However, the effect of 1,25(OH)2D3 on MEL cell proliferation was significantly greater by one order of magnitude than that on differentiation (IC(50): 9.2 vs 0.8 nM, respectively). The response of activin A-treated mature MEL cells to 1,25(OH)2D3 in the induction of 1,25(OH)2D3-24-hydroxylase (24-OHase) activity, a rapid effect of 1,25(OH)2D3, was enhanced to the same degree as in untreated immature cells, suggesting that differences in capacity of cells to inactivate 1,25(OH)2D3 did not contribute to augmentation of 1,25(OH)2D3 effect in activin A-treated mature cells. Furthermore, neither the number nor the affinity of vitamin D receptors (VDR) differed significantly between activin A-treated cells and untreated immature cells. The intracellular cAMP level, which affects 1,25(OH)2D3-mediated induction of 24-OHase activity, was significantly less in activin A-treated mature cells than in immature MEL cells. The addition of dibutyryl cAMP (dbc AMP) to activin A-treated MEL cells dose-dependently attenuated 1,25(OH)2D3-mediated induction of 24-OHase activity, finally to a level comparable to that of the untreated cells at the final concentration of 100 nM dbcAMP, while dbcAMP itself by 100 nM did not affect MEL cell differentiation by 24 h. In summary, we have shown for the first time that 1,25(OH)2D3 exerted its effect on leukemia cells at physiological concentration and that the magnitude of this effect depended on the changes in intracellular cAMP level through stages of differentiation, suggesting that the cAMP-protein kinase A system may be useful as a target for clinical application of vitamin D analogs by improving the sensitivity of leukemic cells to 1,25(OH)2D3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号