首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
Self-incompatibility in the genus Prunus is controlled by two genes at the S-locus, S-RNase and SFB. Both genes exhibit the high polymorphism and high sequence diversity characteristic of plant self-incompatibility systems. Deduced polypeptide sequences of three myrobalan and three domestic plum S-RNases showed over 97% identity with S-RNases from other Prunus species, including almond, sweet cherry, Japanese apricot and Japanese plum. The second intron, which is generally highly polymorphic between alleles was also remarkably well conserved within these S-allele pairs. Degenerate consensus primers were developed and used to amplify and sequence the co-adapted polymorphic SFB alleles. Sequence comparisons also indicated high degrees of polypeptide sequence identity between three myrobalan and the three domestic plum SFB alleles and the corresponding Prunus SFB alleles. We discuss these trans-specific allele identities in terms of S-allele function, evolution of new allele specificities and Prunus taxonomy and speciation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S 1 , S 2 , and S 2m , found in this study encode mutated pollen determinants, SFB, while only S 2m has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S 2m -RNase is substituted by a tyrosine residue, thereby reducing RNase stability. The peach SFB mutations are similar to the SFB mutations found in SC haplotypes of sweet cherry (P. avium) and Japanese apricot (P. mume). SFB 1 of the S 1 haplotype, a mutant version of almond (P. dulcis) S k haplotype, encodes truncated SFB due to a 155 bp insertion. SFB 2 of the S 2 and S 2m haplotypes, both of which are mutant versions of the S a haplotype in Japanese plum (P. salicina), encodes a truncated SFB due to a 5 bp insertion. Thus, regardless of the functionality of the pistil determinant, all three peach S haplotypes are SC haplotypes. Our finding that peach has mutant versions of S haplotypes that function in almond and Japanese plum, which are phylogenetically close and remote species, respectively, to peach in the subfamily Prunoideae of the Roasaceae, provides insight into the SC/SI evolution in Prunus. We discuss the significance of SC pollen part mutation in peach with special reference to possible differences in the SI mechanisms between Prunus and Solanaceae.  相似文献   

3.
Self-incompatibility has been studied extensively at the molecular level in Solanaceae, Rosaceae and Scrophulariaceae, all of which exhibit gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, i.e., the S-RNase gene and the pollen-expressed SFB/SLF (S-haplotype-specific F-box/S-locus F-box) gene. However, the SFB gene in Japanese plum (Prunus salicina Lindl.) has not yet been identified. We determined eight novel sequences homologous to the SFB genes of other Prunus species and named these sequences PsSFB. The gene structure of the SFB genes and the characteristic domains in deduced amino acid sequences were conserved. Three sequences from 410 to 2,800 bp of the intergenic region between the PsSFB sequences and the S-RNase alleles were obtained. The eight identified PsSFB sequences showed S-haplotype-specific polymorphism, with 74–83% amino acid identity. These alleles were exclusively expressed in the pollen. These results suggest that the PsSFB alleles are the pollen S-determinants of GSI in Japanese plum. Nucleotide sequence data reported are available in the NCBI database under the accession numbers DQ849084–DQ849090 and DQ849118.  相似文献   

4.
In F1 hybrid breeding of Brassica vegetables utilizing the self-incompatibility system, identification of S genotypes in breeding lines is required. In the present study, we developed S-tester lines of 87 S haplotypes, i.e., 42 S haplotypes in B. rapa and 45 S haplotypes in B. oleracea. With these materials, we established a simple, efficient, and reliable dot-blot technique for S genotyping for 40 S haplotypes of B. rapa and and 33 of B. oleracea using allele-specific oligonucleotide probes and allele-specific primer pairs designed from sequences of each SP11 allele. In this method, DNA fragments amplified using multiplex primer pairs with digoxigenin-dUTP were hybridized with dot-blotted allele-specific oligonucleotide probes with distinct signals. In addition, we developed a screening method for identification of plants harboring a particular S haplotype using a labeled allele-specific oligonucleotide probe. This method is considered to be useful for purity testing of F1 hybrid seeds.  相似文献   

5.
Tetraploid sour cherry (Prunus cerasus L.) exhibits gametophytic self-incompatibility (GSI) whereby the specificity of self-pollen rejection is controlled by alleles of the stylar and pollen specificity genes, the S-RNase and SFB (S haplotype-specific F-box protein gene), respectively. As sour cherry selections can be either self-compatible (SC) or self-incompatible (SI), polyploidy per se does not result in SC. Instead, the genotype dependent loss of SI in sour cherry is due to the accumulation of non-functional S-haplotypes. The presence of two or more non-functional S-haplotypes within sour cherry 2x pollen renders that pollen SC. We previously determined that sour cherry has non-functional S-haplotypes for the S 1 -, S 6 - and S 13 -haplotypes that are also present in diploid sweet cherry (P. avium L.). The mutations underlying these non-functional S-haplotypes have been determined to be structural alterations of either the S-RNase or SFB. Based on these structural alterations we designed derived cleaved amplified polymorphic sequence (dCAPS) markers and S-haplotype specific primer pairs that took advantage of either the length polymorphisms between S-haplotypes, differential S-haplotype sequences, or differential restriction enzyme cut sites. These primer pairs can discriminate among the mutant and wild-type S-haplotypes thereby enabling the identification of the S-haplotypes present in a sour cherry individual. This information can be used to determine whether the individual is either SC or SI. In a sour cherry breeding program, the ability to discriminate between SI and SC individuals at the seedling stage so that SI individuals can be discarded prior to field planting, dramatically increases the program’s efficiency and cost-effectiveness.  相似文献   

6.
The gene SFB encodes an F-box protein that has appropriate S-haplotype-specific variation to be the pollen determinant in the S-RNase-based gametophytic self-incompatibility (GSI) reaction in Prunus (Rosaceae). To further characterize Prunus SFB, we cloned and sequenced four additional alleles from sweet cherry (P. avium), SFB 1 , SFB 2 , SFB 4 , and SFB 5 . These four alleles showed haplotype-specific sequence diversity similar to the other nine SFB alleles that have been cloned. In an amino acid alignment of Prunus SFBs, including the four newly cloned alleles, 121 out of the 384 sites were conserved and an additional 65 sites had only conservative replacements. Amino acid identity among the SFBs ranged from 66.0% to 82.5%. Based on normed variability indices (NVI), 34 of the non-conserved sites were considered to be highly variable. Most of the variable sites were located at the C-terminal region. A window-averaged plot of NVI indicated that there were two variable and two hypervariable regions. These variable and hypervariable regions appeared to be hydrophilic or at least not strongly hydrophobic, which suggests that these regions may be exposed on the surface and function in the allele specificity of the GSI reaction. Evidence of positive selection was detected using maximum likelihood methods with sites under positive selection concentrated in the variable and hypervariable regions.K. Ikeda and B. Igic contributed equally to this paperNucleotide sequence data reported will appear in the EMBL, GenBank and DDBJ nucleotide sequence databases under the accession numbers AB111518, AB111519, AB111520, and AB111521, for SFB 1, SFB 2, SFB 5, and SFB 4, respectively  相似文献   

7.
The cherry (Prunus avium), a self-incompatible diploid species, and the sour cherry (Prunus cerasus), a self-incompatible or self-compatible allotetraploid species derived from P. avium and Prunus fruticosa, share several S-RNase alleles, including S 13 . An inactive form, S 13 °, is found in some sour cherries. Two (AT) microsatellites are associated with allele S 13 -RNase, one in the first intron and one in the second. Their length polymorphisms were studied in 14 sweet and 17 wild cherries (both P. avium) and in 42 sour cherries. Fluorescent primers amplifying each microsatellite were designed and amplification products sized on an automated sequencer. Variants ranged from 247 to 273 bp for the first intron microsatellite and from 308 to 322 bp for the second. There were 34 combinations and, surprisingly, the lengths of the two microsatellites were correlated. Generally, the sweet, wild and sour cherries had different combinations, and the four examples of S 13 °-RNase were associated with three different combinations. Certain sequences associated with the microsatellites match footprints of transposons. The distribution of combinations indicated little overlap between the three populations analysed and provided useful insights into relationships of some of the accessions allowing some parentages to be checked. In the diploid sweet and wild cherries, S 13 variants presumably resulted from slippage during replication, but in the tetraploid sour cherries, which can have more than one copy of S 13 or S 13 °, intra-allelic crossing over may have generated new variants. The possible involvement of transposable elements in the origin of these microsatellites is considered.  相似文献   

8.
Apple (Malus domestica Borkh.) possesses gametophytic self-incompatibility (GSI) which is controlled by S-RNase in the pistil as well as a pollen S-determinant that has not been well characterized. The identification of S-locus F-box brother (SFBB) genes, which are good candidates for the pollen S-determinant in apple and pear, indicated the presence of multiple S-allelic polymorphic F-box genes at the S-locus. In apple, two SFBB gene groups have been described, while there are at least three groups in pear. In this report, we identified five MdSLFB (S-RNase-linked F-box) genes from four different S-genotypes of apple. These genes showed pollen- and S-allele-specific expression with a high polymorphism among S-alleles. The phylogenetic tree suggested that some of them belong to SFBBα or β groups as described previously, while others appear to be different from SFBBs. In particular, the presence of MdSLFB3 and MdSLFB9 suggested that there are more S-allelic polymorphic F-box gene groups in the S-locus besides α and β. Based on the sequence polymorphism of MdSLFBs, we developed an S-genotyping system for apple cultivars. In addition, we isolated twelve MdSLFB-like genes, which showed pollen-specific expression without S-allelic polymorphism.  相似文献   

9.
Radish, belonging to the family Brassicaceae, has a self-incompatibility which is controlled by multiple alleles on the S locus. To employ the self-incompatibility in an F1 breeding system, identification of S haplotypes is necessary. Since collection of S haplotypes and determination of nucleotide sequences of SLG, SRK, and SCR alleles in cultivated radish have been conducted by different groups independently, the same or similar sequences with different S haplotype names and different sequences with the same S haplotype names have been registered in public databases, resulting in confusion of S haplotype names for researchers and breeders. In the present study, we developed S homozygous lines from radish F1 hybrid cultivars in Japan and determined the nucleotide sequences of SCR, the S domain and the kinase domain of SRK, and the SLG of a large number of S haplotypes. Comparing these sequences with our previously published sequences, the haplotypes were ordered into 23 different S haplotypes. The sequences of the 23 S haplotypes were compared with S haplotype sequences registered by different groups, and we suggested a unification of these S haplotypes. Furthermore, dot-blot hybridization using SRK allele-specific probes was examined for developing a standard method for S haplotype identification.  相似文献   

10.
The nucleotide sequences of ten SP11 and nine SRK alleles in Raphanus sativus were determined, and deduced amino acid sequences were compared with those of Brassica SP11 and SRK. The amino acid sequence identity of class-I SP11s in R. sativus was about 30% on average, the highest being 52.2%, while that of the S domain of class-I SRK was 77.0% on average and ranged from 70.8% to 83.9%. These values were comparable to those of SP11 and SRK in Brassica oleracea and B. rapa. SP11 of R. sativus S-21 was found to be highly similar to SP11 of B. rapa S-9 (89.5% amino acid identity), and SRK of R. sativus S-21 was similar to SRK of B. rapa S-9 (91.0%). SP11 and SRK of R. sativus S-19 were also similar to SP11 and SRK of B. oleracea S-20, respectively. These similarities of both SP11 and SRK alleles between R. sativus and Brassica suggest that these S haplotype pairs originated from the same ancestral S haplotypes.  相似文献   

11.

Key message

We report a rapid and reliable method for S genotyping of Rosaceae fruit trees, which would to be useful for successful planting of cross-compatible cultivars in orchards.

Abstract

Japanese plum (Prunus salicina) and sweet cherry (Prunus avium), belonging to the family Rosaceae, possess gametophytic self-incompatibility controlled by a single polymorphic locus containing at least two linked genes, S-RNase and SFB (S-haplotype-specific F-box gene). For successful planting of cross-compatible cultivars of Rosaceae fruit trees in commercial orchards, it is necessary to obtain information on S genotypes of cultivars. Recently, a method of dot-blot analysis utilizing allele-specific oligonucleotides having sequences of SFB-HVa region has been developed for identification of S haplotypes in Japanese plum and sweet cherry. However, dot-blot hybridization requires considerable time and skill for analysis even of a small number of plant samples. Thus, a quick and efficient method for S genotyping was developed in this study. In this method, instead of a nylon membrane used for dot-blot hybridization, streptavidin-coated magnetic beads are used to immobilize PCR products, which are hybridized with allele-specific oligonucleotide probes. Our improved method allowed us to identify 10 S haplotypes (S-a, S-b, S-c, S-d, S-e, S-f, Sh, S-k, S-7 and S-10) of 13 Japanese plum cultivars and 10 S haplotypes (S-1, S-2, S-3, S-4, S-4′, S-5, S-6, S-7, S-9 and S-16) of 13 sweet cherry cultivars utilizing SFB or S-RNase gene polymorphism. This method would be suitable for identification of S genotypes of a small number of plant samples.  相似文献   

12.
Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S 3 haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S 3) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB511822–AB511825 and AB511859–AB511862.  相似文献   

13.
A total of 145 microsatellite primer pairs from Prunus DNA sequences were studied for transferability in a set of eight cultivars from nine rosaceous species (almond, peach, apricot, Japanese plum, European plum, cherry, apple, pear, and strawberry), 25 each of almond genomic, peach genomic, peach expressed sequence tags (EST), and Japanese plum genomic, 22 of almond EST, and 23 of apricot (13 EST and 10 genomic), all known to produce single-locus and polymorphic simple-sequence repeats in the species where they were developed. Most primer pairs (83.6%) amplified bands of the expected size range in other Prunus. Transferability, i.e., the proportion of microsatellites that amplified and were polymorphic, was also high in Prunus (63.9%). Almond and Japanese plum were the most variable among the diploid species (all but the hexaploid European plum) and peach the least polymorphic. Thirty-one microsatellites amplified and were polymorphic in all Prunus species studied, 12 of which, covering its whole genome, are proposed as the “universal Prunus set”. In contrast, only 16.3% were transferable in species of other Rosaceae genera (apple, pear, and strawberry). Polymorphic Prunus microsatellites also detected lower levels of variability in the non-congeneric species. No significant differences were detected in transferability and the ability to detect variability between microsatellites of EST and genomic origin.  相似文献   

14.
Sporophytic self-incompatibility (SSI) in the genus Ipomoea (Convolvulaceae) is controlled by a single polymorphic S locus. We have previously analyzed genomic sequences of an approximately 300 kb region spanning the S locus of the S 1 haplotype and characterized the genomic structure around this locus. Here, we further define the physical size of the S locus region by mapping recombination breakpoints, based on sequence analysis of PCR fragments amplified from the genomic DNA of recombinants. From the recombination analysis, the S locus of the S 1 haplotype was delimited to a 0.23 cM region of the linkage map, which corresponds to a maximum physical size of 212 kb. To analyze differences in genomic organization between S haplotypes, fosmid contigs spanning approximately 67 kb of the S 10 haplotype were sequenced. Comparison with the S 1 genomic sequence revealed that the S haplotype-specific divergent regions (SDRs) spanned 50.7 and 34.5 kb in the S 1 and S 10 haplotypes, respectively and that their flanking regions showed a high sequence similarity. In the sequenced region of the S 10 haplotype, five of the 12 predicted open reading frames (ORFs) were found to be located in the divergent region and showed co-linear organization of genes between the two S haplotypes. Based on the size of the SDRs, the physical size of the S locus was estimated to fall within the range 34–50 kb in Ipomoea.  相似文献   

15.
16.
Gametophytic self-incompatibility, a natural mechanism occurring in pear and other fruit-tree species, is usually controlled by the S-locus with allelic variants ( S1, S2, Sn). Recently, biochemical and molecular tools have determined the S-genotype of cultivars in various species. The present study determined the S-locus composition of ten European pear cultivars via S-PCR molecular assay, thereby obviating time-consuming fieldwork whose results are often ambiguous because of environmental effects. To verify the S-PCR assay, two putative S-allele DNA fragments of Japanese pear were isolated; their sequences proved to be identical to those reported in the databank. Six S-allele fragments of European pear were then sequenced. While field data confirmed the molecular results, fully and half-compatible field crosses were not distinguishable.  相似文献   

17.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

18.

Background  

Salmonella enterica serovar Typhi and Typhimurium are closely related serovars as indicated by >96% DNA sequence identity between shared genes. Nevertheless, S. Typhi is a strictly human-specific pathogen causing a systemic disease, typhoid fever. In contrast, S. Typhimurium is a broad host range pathogen causing only a self-limited gastroenteritis in immunocompetent humans. We hypothesize that these differences have arisen because some genes are unique to each serovar either gained by horizontal gene transfer or by the loss of gene activity due to mutation, such as pseudogenes. S. Typhi has 5% of genes as pseudogenes, much more than S. Typhimurium which contains 1%. As a consequence, S. Typhi lacks several protein effectors implicated in invasion, proliferation and/or translocation by the type III secretion system that are fully functional proteins in S. Typhimurium. SseJ, one of these effectors, corresponds to an acyltransferase/lipase that participates in SCV biogenesis in human epithelial cell lines and is needed for full virulence of S. Typhimurium. In S. Typhi, sseJ is a pseudogene. Therefore, we suggest that sseJ inactivation in S. Typhi has an important role in the development of the systemic infection.  相似文献   

19.
In the US, clonal growth of Fallopia japonica, Fallopia sachalinensis and their hybrid Fallopia x bohemica (Polygonaceae) is prominent, yet sexual reproduction and hybridization contribute to the genetic complexity of swarms. The contribution to this diversity from multiple introductions is unknown. Using 800 bp of the non-coding chloroplast marker accD–rbcL, we compared 21 Japanese haplotypes with 46 US samples from 11 states, 2 Canadian samples, and 6 European samples from 4 countries, in order to investigate if there were repeated introductions from Asia. While most North American and all European haplotypes accessions in our collection matched a single widespread haplotype, we identified 8 other haplotypes. Three haplotypes of F. japonica (including the widespread haplotype) and one F. sachalinensis matched previously identified Japanese haplotypes, supporting the hypothesis of multiple introductions in the US. Five additional US haplotypes were detected once. Four of these differed from Japanese haplotypes by one single nucleotide polymorphism (SNP), possibly indicating a recent in situ change. The fifth haplotype represents a garden cultivar, which differed from all F. japonica haplotypes. It therefore appears that the US genetic diversity of these taxa has three sources: intra-specific reproduction, inter-specific reproduction, and multiple sources of introduction.  相似文献   

20.
Self-incompatibility (SI), an important barrier to inbreeding in flowering plants, is controlled in many species by a single polymorphic S-locus. In the Solanaceae, two tightly linked S-locus genes, S-RNase and SLF (S-locus F-box)/SFB (S-haplotype-specific F-box), control SI expression in pistil and pollen, respectively. The pollen S-determinant appears to function to inhibit all but self S-RNase in the Solanaceae, but its genetic function in the closely-related Plantaginaceae remains equivocal. We have employed transposon mutagenesis in a member of the Plantaginaceae (Antirrhinum) to generate a pollen-part SI-breakdown mutant Pma1 (Pollen-part mutation in Antirrhinum1). Molecular genetic analyses showed that an extra telocentric chromosome containing AhSLF-S 1 is present in its self-compatible but not in its SI progeny. Furthermore, analysis of the effects of selection revealed positive selection acting on both SLFs and SFBs, but with a stronger purifying selection on SLFs. Taken together, our results suggest an inhibitor role of the pollen S in the Plantaginaceae (as represented by Antirrhinum), similar to that found in the Solanaceae. The implication of these findings is discussed in the context of S-locus evolution in flowering plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Yongbiao Xue, Yijing Zhang, and Qiuying Yang contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号