首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We have generated a number of mAb against various epitopes on the external envelope glycoprotein, gp46, of human T cell leukemia virus type I (HTLV-I) from a WKA rat immunized with a recombinant vaccinia virus containing the HTLV-I env gene. Among these mAb, one group of mAb, represented by a mAb designated LAT-27, could neutralize the infectivity of HTLV-I, as determined by a HTLV-I-mediated cell fusion inhibition assay. LAT-27 also interfered with transformation of normal T lymphocytes by HTLV-I in vitro. An antibody-binding assay using overlapping synthetic oligopeptides showed that LAT-27 bound specifically to 10-mer peptides that contained the gp46 amino acid sequence 191-196 (Leu-Pro-His-Ser-Asn-Leu). Antibodies from HTLV-I+ humans interfered with the binding of LAT-27 to gp46 Ag. Sera from rabbits immunized with a LAT-27-reactive peptide, 190-199, conjugated with OVA, but not sera from OVA-immunized rabbits, reacted with gp46 Ag and neutralized infectivity of HTLV-I. These results show that the HTLV-I neutralization epitope recognized by LAT-27 locates to the gp46 amino acids 191-196, and that immunization with a peptide containing the LAT-27 epitope can elicit an HTLV-I neutralizing antibody response.  相似文献   

2.
Sadler K  Zhang Y  Xu J  Yu Q  Tam JP 《Biopolymers》2008,90(3):320-329
During viral entry, the fusogenic state of human immunodeficiency virus Type 1 (HIV-1) envelope protein gp41 is a quaternary structure consisting of three gp41 glycoproteins, each with two conserved helical domains (N-HR and C-HR). Thus far, the examination of monomeric gp41 peptides as an immunologically focused approach to vaccine design has not been successful. Here we report an approach using quaternary protein mimetics (called 3alpha mimetics) that are based on the gp41 N-HR and C-HR domains to closely mimic the fusogenic state and overcome the deficiencies of the monomeric peptide approach for synthetic vaccine design. The 3alpha mimetics are conveniently prepared by chemoselective ligation of unprotected monomeric peptides to an interstrand linker, and display enhanced conformational stability compared to the corresponding monomers. The 3alpha mimetics with or without a covalently attached T-helper epitope were immunogenic and elicited antisera that bound both recombinant gp160, which contains gp41, and HIV-1 virions and immunoprecipitated recombinant gp41. Anti-3alpha mimetic antisera neutralized viral infectivity against R5- and X4-tropic strains of HIV-1 at 31.5 degrees C. The results suggest that a quaternary protein approach to mimic conserved and functional domains of viral envelope proteins is desirable for HIV vaccine development as such antigens are more likely to produce immunologically-focused and broadly neutralizing antibody responses.  相似文献   

3.
4.
It has been reported that the C-terminus of the second conserved region (C2) of the envelope glycoprotein gp120, encompassing peptide RSANFTDNAKTIIVQLNESVEIN (NTM), is important for infectivity and neutralization of the human immunodeficiency virus type 1 (HIV-1). It was also demonstrated that human natural anti-vasoactive intestinal peptide (VIP) antibodies reactive with this gp120 region play an important role in control of HIV disease progression. The bioinformatic analysis based on the time-frequency signal processing revealed non-obvious similarities between NTM and VIP. When tested against a battery of sera from 46 AIDS patients, these peptides, in spite of a significant difference in their primary structures, showed a similar reactivity profiles (r = 0.83). Presented results point out that similarity in the periodical pattern of some physicochemical properties in primary structures of peptides plays a significant role in determination of their immunological crossreactivity. Based on these findings, we propose this bioinformatic criterion be used for design of VIP/NTM peptide mimetics for prevention and treatment of HIV disease.  相似文献   

5.
Antigenic sites on human T cell leukemia virus type I (HTLV-I) gp46 and gp21 envelope glycoproteins that are immunogenic in man were studied with envelope gene (env)-encoded synthetic peptides and a mAb to HTLV-I gp46 envelope glycoprotein. Antibodies in 78% of sera from HTLV-I seropositive subjects reacted with synthetic peptide 4A (amino acids 190 to 209) from a central region of HTLV-I gp46. Human anti-HTLV-I antibodies also bound to synthetic peptides 6 (29% of sera) and 7 (18% of sera) from a C-terminal region of gp46 (amino acids 296 to 312) and an N-terminal region of gp21 (amino acids 374 to 392), respectively. mAb 1C11 raised to affinity-purified HTLV-I gp46 reacted with gp46 external envelope glycoprotein and gp63 envelope precursor in immunoblot assay and also bound to the surface of HTLV-I+ cells lines HUT-102 and MT-2. Antibody 1C11 did not react with HTLV-II or HIV-infected cells or with a broad panel of normal human tissues or cell lines. In competitive RIA, anti-gp46 antibody 1C11 was inhibited from binding to gp46 either by antibodies from HTLV-I seropositive subjects or by HTLV-I env-encoded synthetic peptide 4A, indicating that 1C11 bound to or near a site on gp46 within amino acids 190 to 209 also recognized by antibodies from HTLV-I-seropositive individuals. When tested in syncytium inhibition assay, mAb 1C11 did not neutralize the infectivity of HTLV-I. Thus, HTLV-I infection in man is associated with a major antibody response to a region of gp46 within amino acids 190 to 209 that is on the surface of virus-infected cells.  相似文献   

6.
7.
In vitro generation of an HTLV-III variant by neutralizing antibody   总被引:16,自引:0,他引:16  
Transmission and culture of "parental" virus (HTLV-III) from H9 cells transfected with the cloned isolate (lambda HXB-2D) in human serum possessing HTLV-III neutralizing antibody selected for a "variant" that was not neutralized by the selecting serum but was neutralized by another antibody-positive serum "Control" virus, selected in serum lacking neutralizing antibody, and the variant showed highly similar tryptic peptide maps of the major envelope glycoprotein, and no changes in restriction enzyme patterns of viral DNA. These findings show that HTLV-III type-specific neutralizing antibodies occur, can influence the propagation of variant viruses that may arise, and presumably result from minor changes in the eliciting antigen. The extent to which such type-specific neutralizing antibodies influence immune surveillance against HTLV-III infection in vivo, a question with relevance to future vaccination attempts, remains to be determined. Nucleotide sequencing of the control and variant envelope genes may elucidate a region important for virus neutralization and vaccine development.  相似文献   

8.
A Achour  F Bex  P Hermans  A Burny    D Zagury 《Journal of virology》1996,70(10):6741-6750
Cytotoxic T lymphocytes (CTL) may be important to prevent cell-to-cell transmission of human immunodeficiency virus type 1 (HIV-1), the agent responsible for AIDS. In this study, we investigated the epitope specificity of CTLs induced in individuals immunized against the virus envelope glycoprotein gp160. The determinant of HIV-1 gp160 for the stimulation of CTL is located in a region of high sequence variability among HIV-1 isolates, the so-called V3 loop P18. Using a panel of P18 peptides, we compared the CTL specificities of cells from two individuals immunized with vaccinia virus recombinants expressing the envelope glycoproteins from two different strains of HIV-1, IIIB and SIMI. For this purpose, CTLs specific for the IIIB P18 peptide (RIQRGPGRAFVTIGK) were compared with CTLs for the site from the SIMI isolate (TLHMGPKRAFYATGD). The results indicate that in contrast to CD8+ CTLs induced by the glycoprotein from strain IIIB, CD8+ CTLs induced by strain SIMI strongly cross-reacted with targets presenting P18 peptides as well as envelope proteins from the divergent MN and RF isolates but failed to cross-react with targets that presented the IIIB peptide. These data have implications for the design of an HIV vaccine.  相似文献   

9.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

10.
Sera collected in New York in 1984 from 77 patients with homozygous beta-thalassemia were assayed for antibodies to HTLV-III by ELISA and Western blot techniques. Eight (12%) of the 66 hypertransfused thalassemics were seropositive. Retrospective sera of these eight individuals were examined by radioimmune precipitation (RIP), and assays for neutralization of virus infectivity were performed. With seroconversion, antibodies to viral envelope proteins appeared first and were correlated with development of neutralizing antibody. Affinity purified gp120, the major envelope glycoprotein of HTLV-III, blocked viral infectivity and absorbed neutralizing antibody activity from a positive serum. Neutralizing antibody titers mirrored antibody titers to gp120 by RIP. Antibody to gp120 sometimes occurred in the absence of neutralizing antibody, although the reverse was not true. One thalassemia patient who exhibited antibody to gp120 for 3 yr post-seroconversion failed to develop neutralizing antibody, acquired the acquired immunodeficiency syndrome with central nervous system involvement and lymphoma, and subsequently died. In contrast, all other seropositive thalassemics possessed neutralizing antibodies, and were asymptomatic or exhibited only lymphadenopathy. These results indicate that gp120 elicits neutralizing antibodies in the course of natural infection with HTLV-III. The relationship seen here between neutralizing antibody and better clinical outcome needs to be verified by additional studies.  相似文献   

11.
Monoclonal antibodies produced against the prototype cell-adapted Wyoming strain of equine infectious anemia virus (EIAV), a lentivirus, were studied for reactivity with the homologous prototype and 16 heterologous isolates. Eighteen hybridomas producing monoclonal antibodies (MAbs) were isolated. Western blot (immunoblot) analyses indicated that 10 were specific for the major envelope glycoprotein (gp90) and 8 for the transmembrane glycoprotein (gp45). Four MAbs specific to epitopes of gp90 neutralized prototype EIAV infectivity. These neutralizing MAbs apparently reacted with variable regions of the envelope gp90, as evidenced by their unique reactivity with the panel of isolates, suggesting recognition of at least three different neutralization epitopes. The conformation of these epitopes appears to be continuous, as they resisted treatment with sodium dodecyl sulfate and reducing reagents. Monoclonal antibodies that reacted with conserved epitopes on gp90 or gp45 failed to neutralize EIAV. Our data also demonstrated that there was a large spectrum of possible EIAV serotypes and confirmed that antigenic variation occurs with high frequency in EIAV. Moreover, the data showed that variation is a rapid and random process, as no pattern of variant evolution was evident by comparison of 13 isolates from parallel infections. These results represent the first production of neutralizing MAbs specific for a lentivirus glycoprotein and document alterations in one or more neutralization epitopes of the major surface glycoprotein among sequential isolates of EIAV recovered during persistent infection.  相似文献   

12.
The human immunodeficiency virus (HIV)-1 envelope glycoprotein is synthesized as a precursor (gp160) and subsequently cleaved to generate the external gp120 and transmembrane gp41 glycoproteins. Both gp120 and gp41 have been demonstrated to mediate critical functions of HIV, including viral attachment and fusion with the cell membrane. The antigenic variability of the HIV-1 envelope glycoprotein has presented a significant problem in the design of appropriate and successful vaccines and offers one explanation for the ability of HIV to evade immune surveillance. Therefore, the development and characterization of functional antibodies against conserved regions of the envelope glycoprotein is needed. Because of this need, we generated a panel of murine monoclonal antibodies (MuMabs) against the HIV-1 envelope glycoprotein. To accomplish this, we immunized Balb/C mice with a recombinant glycoprotein 160 (gp160) that was synthesized in a baculovirus expression system. From the growth-positive hybridomas, three MuMabs were generated that demonstrated significant reactivity with recombinant gp120 but failed to show reactivity against HIV-1 gp41, as determined by enzyme-linked immunosorbent assay (ELISA). Using vaccinia constructs that synthesize variant truncated subunits of gp160, we were able to map reactivity of all three of the Mabs (ID6, AC4, and AD3) to the first 204 residues of gp120 (i.e., the N terminus of gp120) via Western blot analysis. Elucidation of the epitopes for these Mabs may have important implications for inhibition of infection by HIV-1. Our initial attempts to map these Mabs with linear epitopes have not elucidated a specific antigenic determinant; however, several physical characteristics have been determined that suggest a continuous surface epitope. Although these antibodies failed to neutralize cell-free or cell-associated infection by HIV-1, they did mediate significant antibody-dependent cellular cytotoxicity (ADCC) activity, indicating potential therapeutic utility. In summary, these data suggest the identification of a potentially novel site in the first 200 aa of gp120 that mediates ADCC.  相似文献   

13.
Human monoclonal antibodies (HuMAbs) demonstrate great potential for passive immunotherapy against HIV-1. The gp41 transmembrane envelope glycoprotein of HIV has an important role in the pathogenicity of AIDS and importantly displays considerably less hypervariability than the gp120 surface envelope HIV glycoprotein, which makes it particularly a better candidate for the development of passive and active immunotherapies. The general aim of this study was to develop HuMAbs to HIV surface glycoproteins and particularly gp41. Peripheral blood mononuclear cells (PBMCs) were isolated from an HIV-seropositive long-term nondisease progressing patient. B-cells from this individual were then immortalized by Epstein-Barr virus (EBV) transformation, and antibody production was stabilized by fusion of transformed cells with a heteromyeloma. Subsets of the human heterohybridomas so generated were analyzed by ELISA. The hybridoma with the highest binding by immunoassay against gp160 was further analyzed. This hybridoma, designated as clone 37 (C37), was determined to be an IgM Kappa antibody and overlapping peptides of HIV envelope proteins (derived from the MN tissue culture line adapted HIV isolate) were used to map the specific binding domain of this HuMAb. Overlapping peptides designated 2026 (SWSNKSLDDIWNN, AA614-626), and 2027 (DDIWNNMTWMQWEREIDNYT, AA621-640) within the HIV-1 gp41 transmembrane glycoprotein were demonstrated to bind to C37 indicating that the specific binding domain for the antibody was DDIWNN. High affinity binding of C37 by ELISA to recombinant gp41 was demonstrated as well. Few IgM HuMAbs against HIV have been generated and characterized. Theoretically, because of the pentameric binding nature of IgM antibodies as well as their very efficient ability to activate complement, such reagents could have potential as anti-HIV agents.  相似文献   

14.
The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the infected cells. To be infectious, most of the viruses require viral envelope glycoprotein maturation by host cell endoproteases. In spite of the strong variability of primary sequences observed within different viral envelope glycoproteins, the endoproteolytical cleavage occurs mainly in a highly conserved domain at the carboxy terminus of the basic consensus sequence (Arg-X-Lys/Arg-Arg downward arrow). The same consensus sequence is recognized by the kexin/subtilisin-like serine proteinases (so called convertases) in many cellular substrates such as prohormones, proprotein of receptors, plasma proteins, growth factors and bacterial toxins. Therefore, several groups of investigators have evaluated the implication of convertases in viral envelope glycoprotein cleavage. Using the vaccinia virus overexpression system, furin was first shown to mediate the proteolytic maturation of both human immunodeficiency virus (HIV-1) and influenza virus envelope glycoproteins. In vitro studies demonstrated that purified convertases directly and specifically cleave viral envelope glycoproteins. Although these studies suggested the participation of several enzymes belonging to the convertases family, recent data suggest that other protease families may also participate in the HIV envelope glycoprotein processing. Their role in the physiological maturation process is still hypothetical and the molecular mechanism of the cleavage is not well documented. Crystallization of the hemagglutinin precursor (HA0) of influenza virus allowed further understanding of the molecular interaction between viral precursors and the cellular endoproteases. Furthermore, relationships between differential pathogenicity of influenza strains and their susceptibility to cleavage are molecularly funded. Here we review the most recent data and recent insights demonstrating the crucial role played by this activation step in virus infectivity. We discuss the cellular endoproteases that are implicated in HIV gp160 endoproteolytical maturation into gp120 and gp41.  相似文献   

15.
In previous studies, we have used antisera raised to envelope (env)-gene-encoded synthetic peptides to identify a region of (HIV) glycoprotein (gp) 120 env protein designated SP10 that contains a type-specific neutralizing determinant. To develop a polyvalent, synthetic peptide inoculum that can evoke both neutralizing antibodies and T cell proliferative responses to more than one HIV isolate, synthetic peptides containing type-specific neutralizing determinants of gp120 from HIV isolates HTLV-IIIB (IIIB), HTLV-IIIMN (MN) and HTLV-IIIRF (RF) were coupled to a 16 amino acid T cell epitope (T1) of HIV-IIIB gp120 and used to immunize goats. Goat antisera to each T1-SP10 peptide derived from the SP10 region of gp120 of IIIB, MN, and RF neutralized HIV isolates IIIB, MN and RF in a type-specific manner. Moreover, peripheral blood T cells from immunized goats also proliferated in a type-specific manner to peptides derived from gp120 of IIIB, MN, and RF. When combined in a trivalent inoculum, T1-SP10 peptides from HIV-1 isolates IIIB, MN, and RF evoked a high titered neutralizing antibody response to isolates IIIB, MN, and RF in goats and as well induced immune T cells to undergo blast transformation in the presence of peptides derived from gp120 of all three HIV isolates. The T1 portion of the T1-SP10 construct was shown to induce a B cell antibody response against determinants within the T1 peptide in addition to inducing T cell proliferative responses in immune goat T cells. Moreover, the SP10 portion of the T1-SP10 constructs not only induced B cell antibody production but also induced type-specific T cell proliferative responses localized to the C-terminal variable sequences of the SP10 peptides. Finally, the T1-SP10 peptide construct induced memory T cell proliferative responses to native gp120 env protein. Thus, combinations of homologous SP10 region synthetic peptides containing type-specific neutralizing determinants and T cell epitopes of HIV gp120 may be useful in man to elicit high titered neutralizing B cell responses and, as well, T cell responses to more than one HIV isolate.  相似文献   

16.
The role of carbohydrates in the immunogenicity of human immunodeficiency virus type 1 (HIV-1) glycoproteins (gp160 and gp120) remains poorly understood. We have analyzed the specificity and neutralizing capacity of antibodies raised against native gp160 or against gp160 deglycosylated by either endo F-N glycanase, neuraminidase, or alpha-mannosidase. Rabbits immunized with these immunogens produced antibodies that recognized recombinant gp160 (rgp160) from HIV-1 in a radioimmunoassay and in an enzyme-linked immunosorbent assay. Antibodies elicited by the different forms of deglycosylated gp160 were analyzed for their reactivity against a panel of synthetic peptides. Compared with anti-native gp160 antisera, serum reactivity to most peptides remained unchanged, or it could increase (peptide P41) or decrease. Only antibodies raised against mannosidase-treated gp160 failed to react with a synthetic peptide (peptide P29) within the V3 loop of gp120. Rabbits immunized with desialylated rgp160 generated antibodies which recognized not only rgp160 from HIV-1 but also rgp140 from HIV-2 at high titers. Although all antisera produced against glycosylated or deglycosylated rgp160 could prevent HIV-1 binding to CD4-positive cells in vitro, only antibodies raised against native or desialylated gp160 neutralized HIV-1 infectivity and inhibited syncytium formation between HIV-1-infected cells and noninfected CD4-positive cells, whereas antibodies raised against alpha-mannosidase-treated gp160 inhibited neither virus replication nor syncytium formation. These findings indicate that the carbohydrate moieties of gp160 can modulate the specificity and the protective efficiency of the antibody response to the molecule.  相似文献   

17.
We have previously described a synthetic peptide (T1-SP10) derived from two noncontiguous regions of HTLVIIIB envelope gp120 (T1, amino acids 428-443; SP10, amino acids 303-321) that induced type-specific anti-HIV neutralizing antibodies and T cell proliferative responses against native HIV gp120 when used as a carrier-free immunogen in goats. In this study, HTLVIIIB T1-SP10 synthetic peptides were used to immunize rhesus monkeys to determine if the peptides were capable of eliciting HIV-specific neutralizing antibody and proliferative responses in primates. Four compounds (alum, polyA:polyU, threonyl-muramyldipeptide (MDP) and IFA) were also compared for efficacy as adjuvants in this system. Rhesus monkeys immunized with T1-SP10 peptides generated high titers of antibodies against the immunogens and also against HTLVIIIB gp120. Sera from all four animals given T1-SP10 in IFA or threonyl-MDP neutralized infection by HTLVIIIB and blocked virus-dependent cell fusion events. A peak neutralization titer of 1:940 was seen in one animal given IFA (19600) and a titer of 1:900 was seen in one of the monkeys (17371) given threonyl-MDP. Proliferative responses of immune rhesus PBMC to T1-SP10 appeared after the first injection. After eight immunizations, two of eight monkeys (one injected with peptides in threonyl-MDP and one given peptides in IFA) had PBMC proliferative responses to native HTLVIIIB gp120. These data demonstrate that the carrier-free T1-SP10 synthetic peptide construct can induce high titers of neutralizing anti-HIV antibody responses and PBMC proliferative responses to HIV in primates.  相似文献   

18.
Multiple continuous-flow solid-phase peptide synthesis has been adapted for synthesis of peptides on a cellulose carrier (Whatman 3MM paper). Paper-bound synthetic peptides that represent antigenic determinants of particular proteins detected antibodies against the respective proteins in an enzyme-linked immunosorbent assay. The method is applied to the synthesis, and use in site-directed serology, of four peptides derived from the gp41 glycoprotein of HIV, the Epstein-Barr virus-determined nuclear antigen-1 and VCA proteins of the Epstein-Barr virus, and the early region of human papillomavirus type 11.  相似文献   

19.
The domains of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein that are required for envelope function have been partially characterized. Little is known, however, about the nature of the interactions between these domains. To identify regions of the HIV-1 envelope glycoprotein that are involved in interactions necessary for proper envelope function, we constructed a series of 14 envelope recombinants between the env genes of two HIV-1 isolates. The envelope chimeras were examined for their ability to induce syncytia, to be proteolytically processed, and to function during a spreading viral infection. Our results demonstrate that the exchange between the two isolates of the first and second hypervariable regions (V1/V2) of gp120 results in defects in envelope glycoprotein processing, syncytium formation, and infectivity. Long-term passage of cultures infected with virus bearing a V1/V2 chimeric envelope glycoprotein leads to the emergence of a revertant virus with replication characteristics comparable to those of the wild type. Analysis of the revertant indicated that an Ile-->Met change in the C4 region of gp120 (between hypervariable regions V4 and V5) is responsible for the revertant phenotype. This single amino acid change restores infectivity without significantly affecting gp160 processing, CD4 binding, or the levels of virion-associated gp120. While the Ile-->Met change in C4 greatly enhances the fusogenic potential of the V1/V2 chimeric envelope glycoprotein, it has a detrimental effect on syncytium formation when analyzed in the context of the wild-type envelope. These results suggest that an interaction required for proper envelope glycoprotein function occurs between the V1/V2 and C4 regions of gp120.  相似文献   

20.
K A Page  N R Landau    D R Littman 《Journal of virology》1990,64(11):5270-5276
We constructed a recombinant human immunodeficiency virus (HIV) vector to facilitate studies of virus infectivity. A drug resistance gene was inserted into a gp160- HIV proviral genome such that it could be packaged into HIV virions. The HIV genome was rendered replication defective by deletion of sequences encoding gp160 and insertion of a gpt gene with a simian virus 40 promoter at the deletion site. Cotransfection of the envelope-deficient genome with a gp160 expression vector resulted in packaging of the defective HIV-gpt genome into infectious virions. The drug resistance gene was transmitted and expressed upon infection of susceptible cells, enabling their selection in mycophenolic acid. This system provides a quantitative measure of HIV infection, since each successful infection event leads to the growth of a drug-resistant colony. The HIV-gpt virus produced was tropic for CD4+ human cells and was blocked by soluble CD4. In the absence of gp160, noninfectious HIV particles were efficiently produced by cells transfected with the HIV-gpt genome. These particles packaged HIV genomic RNA and migrated to the same density as gp160-containing virions in a sucrose gradient. This demonstrates that HIV virion formation is not dependent on the presence of a viral envelope glycoprotein. Expression of a murine leukemia virus amphotropic envelope gene in cells transfected with HIV-gpt resulted in the production of virus capable of infecting both human and murine cells. These results indicate that HIV can incorporate envelope glycoproteins other than gp160 onto particles and that this can lead to altered host range. Like HIV type 1 and vesicular stomatitis virus(HIV) pseudotypes, gp-160+ HIV-gpt did not infect murine NIH 3T3 cells that bear human CD4, confirming that these cells are blocked at an early stage of HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号