首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
2.
3.
4.
In the vertebrates, the BMP/Smad1 and TGF-β/Smad2 signaling pathways execute antagonistic functions in different contexts of development. The differentiation of specific structures results from the balance between these two pathways. For example, the gastrula organizer/node of the vertebrates requires a region of low Smad1 and high Smad2 signaling. In Drosophila, Mad regulates tissue determination and growth in the wing, but the function of dSmad2 in wing patterning is largely unknown. In this study, we used an RNAi loss-of-function approach to investigate dSmad2 signaling during wing development. RNAi-mediated knockdown of dSmad2 caused formation of extra vein tissue, with phenotypes similar to those seen in Dpp/Mad gain-of-function. Clonal analyses revealed that the normal function of dSmad2 is to inhibit the response of wing intervein cells to the extracellular Dpp morphogen gradient that specifies vein formation, as measured by expression of the activated phospho-Mad protein. The effect of dSmad2 depletion in promoting vein differentiation was dependent on Medea, the co-factor shared by Mad and dSmad2. Furthermore, double RNAi experiments showed that Mad is epistatic to dSmad2. In other words, depletion of Smad2 had no effect in Mad-deficient wings. Our results demonstrate a novel role for dSmad2 in opposing Mad-mediated vein formation in the wing. We propose that the main function of dActivin/dSmad2 in Drosophila wing development is to antagonize Dpp/Mad signaling. Possible molecular mechanisms for the opposition between dSmad2 and Mad signaling are discussed.  相似文献   

5.
6.
7.
Bone morphogenetic proteins (BMPs) act as morphogens to control patterning and growth in a variety of developing tissues in different species. How BMP morphogen gradients are established and interpreted in the target tissues has been extensively studied in Drosophila melanogaster. In Drosophila, Decapentaplegic (Dpp), a homologue of vertebrate BMP2/4, acts as a morphogen to control dorsal–ventral patterning of the early embryo and anterior–posterior patterning and growth of the wing imaginal disc. Despite intensive efforts over the last twenty years, how the Dpp morphogen gradient in the wing imaginal disc forms remains controversial, while gradient formation in the early embryo is well understood. In this review, we first focus on the current models of Dpp morphogen gradient formation in these two tissues, and then discuss new strategies using genome engineering and nanobodies to tackle open questions.  相似文献   

8.
Belenkaya TY  Han C  Yan D  Opoka RJ  Khodoun M  Liu H  Lin X 《Cell》2004,119(2):231-244
The Drosophila transforming growth factor beta (TGF-beta) homolog Decapentaplegic (Dpp) acts as a morphogen that forms a long-range concentration gradient to direct the anteroposterior patterning of the wing. Both planar transcytosis initiated by Dynamin-mediated endocytosis and extracellular diffusion have been proposed for Dpp movement across cells. In this work, we found that Dpp is mainly extracellular, and its extracellular gradient coincides with its activity gradient. We demonstrate that a blockage of endocytosis by the dynamin mutant shibire does not block Dpp movement but rather inhibits Dpp signal transduction, suggesting that endocytosis is not essential for Dpp movement but is involved in Dpp signaling. Furthermore, we show that Dpp fails to move across cells mutant for dally and dally-like (dly), two Drosophila glypican members of heparin sulfate proteoglycan (HSPG). Our results support a model in which Dpp moves along the cell surface by restricted extracellular diffusion involving the glypicans Dally and Dly.  相似文献   

9.
10.
Glypicans, a family of heparan sulfate proteoglycans attached to the cell surface via a glycosylphosphatidylinositol (GPI)-anchor, play essential roles in morphogen signaling and distributions. A Drosophila glypican, Dally, regulates the gradient formation of Decapentaplegic (Dpp) in the developing wing. To gain insights into the function of glypicans in morphogen signaling, we examined the activities of two mutant forms of Dally: a transmembrane form (TM-Dally) and a secreted form (Sec-Dally). Misexpression of tm-dally in the wing disc had a similar yet weaker effect in enhancing Dpp signaling compared to that of wild-type dally. In contrast, Sec-Dally shows a weak dominant negative activity on Dpp signal transduction. Furthermore, sec-dally expression led to patterning defects as well as a substantial overgrowth of tissues and animals through the expansion of the action range of Hh. These findings support the recently proposed model that secreted glypicans have opposing and/or distinct effects on morphogen signaling from the membrane-tethered forms.  相似文献   

11.
12.
Teleman AA  Cohen SM 《Cell》2000,103(6):971-980
The secreted signaling protein Dpp acts as a morphogen to pattern the anterior-posterior axis of the Drosophila wing. Dpp activity is required in all cells of the developing wing imaginal disc, but the ligand gradient that supports this activity has not been characterized. Here we make use of a biologically active form of Dpp tagged with GFP to examine the ligand gradient. Dpp-GFP forms an unstable extracellular gradient that spreads rapidly in the wing disc. The activity gradient visualized by MAD phosphorylation differs in shape from the ligand gradient. The pMAD gradient adjusted to compartment size when this was experimentally altered. These observations suggest that the Dpp activity gradient may be shaped at the level of receptor activation.  相似文献   

13.
Decapentaplegic (Dpp), a Drosophila homologue of bone morphogenetic proteins, acts as a morphogen to regulate patterning along the anterior-posterior axis of the developing wing. Previous studies showed that Dally, a heparan sulfate proteoglycan, regulates both the distribution of Dpp morphogen and cellular responses to Dpp. However, the molecular mechanism by which Dally affects the Dpp morphogen gradient remains to be elucidated. Here, we characterized activity, stability, and gradient formation of a truncated form of Dpp (DppΔN), which lacks a short domain at the N-terminus essential for its interaction with Dally. DppΔN shows the same signaling activity and protein stability as wild-type Dpp in vitro but has a shorter half-life in vivo, suggesting that Dally stabilizes Dpp in the extracellular matrix. Furthermore, genetic interaction experiments revealed that Dally antagonizes the effect of Thickveins (Tkv; a Dpp type I receptor) on Dpp signaling. Given that Tkv can downregulate Dpp signaling by receptor-mediated endocytosis of Dpp, the ability of dally to antagonize tkv suggests that Dally inhibits this process. Based on these observations, we propose a model in which Dally regulates Dpp distribution and signaling by disrupting receptor-mediated internalization and degradation of the Dpp-receptor complex.  相似文献   

14.
Developing cells acquire positional information by reading the graded distribution of morphogens. In Drosophila, the Dpp morphogen forms a long-range concentration gradient by spreading from a restricted source in the developing wing. It has been assumed that Dpp spreads by extracellular diffusion. Under this assumption, the main role of endocytosis in gradient formation is to downregulate receptors at the cell surface. These surface receptors bind to the ligand and thereby interfere with its long-range movement. Recent experiments indicate that Dpp spreading is mediated by Dynamin-dependent endocytosis in the target tissue, suggesting that extracellular diffusion alone cannot account for Dpp dispersal. Here, we perform a theoretical study of a model for morphogen spreading based on extracellular diffusion, which takes into account receptor binding and trafficking. We compare profiles of ligand and surface receptors obtained in this model with experimental data. To this end, we monitored directly the pool of surface receptors and extracellular Dpp with specific antibodies. We conclude that current models considering pure extracellular diffusion cannot explain the observed role of endocytosis during Dpp long-range movement.  相似文献   

15.
16.
17.
The TGF-β homolog Decapentaplegic (Dpp) acts as a secreted morphogen in the Drosophila wing disc, and spreads through the target tissue in order to form a long range concentration gradient. Despite extensive studies, the mechanism by which the Dpp gradient is formed remains controversial. Two opposing mechanisms have been proposed: receptor-mediated transcytosis (RMT) and restricted extracellular diffusion (RED). In these scenarios the receptor for Dpp plays different roles. In the RMT model it is essential for endocytosis, re-secretion, and thus transport of Dpp, whereas in the RED model it merely modulates Dpp distribution by binding it at the cell surface for internalization and subsequent degradation. Here we analyzed the effect of receptor mutant clones on the Dpp profile in quantitative mathematical models representing transport by either RMT or RED. We then, using novel genetic tools, experimentally monitored the actual Dpp gradient in wing discs containing receptor gain-of-function and loss-of-function clones. Gain-of-function clones reveal that Dpp binds in vivo strongly to the type I receptor Thick veins, but not to the type II receptor Punt. Importantly, results with the loss-of-function clones then refute the RMT model for Dpp gradient formation, while supporting the RED model in which the majority of Dpp is not bound to Thick veins. Together our results show that receptor-mediated transcytosis cannot account for Dpp gradient formation, and support restricted extracellular diffusion as the main mechanism for Dpp dispersal. The properties of this mechanism, in which only a minority of Dpp is receptor-bound, may facilitate long-range distribution.  相似文献   

18.
Decapentaplegic (Dpp), a Drosophila TGF beta/bone morphogenetic protein homolog, functions as a morphogen to specify cell fate along the anteroposterior axis of the wing. Dpp is a heparin-binding protein and Dpp signal transduction is potentiated by Dally, a cell-surface heparan sulfate proteoglycan, during assembly of several adult tissues. However, the molecular mechanism by which the Dpp morphogen gradient is established and maintained is poorly understood. We show evidence that Dally regulates both cellular responses to Dpp and the distribution of Dpp morphogen in tissues. In the developing wing, dally expression in the wing disc is controlled by the same molecular pathways that regulate expression of thick veins, which encodes a Dpp type I receptor. Elevated levels of Dally increase the sensitivity of cells to Dpp in a cell autonomous fashion. In addition, dally affects the shape of the Dpp ligand gradient as well as its activity gradient. We propose that Dally serves as a co-receptor for Dpp and contributes to shaping the Dpp morphogen gradient.  相似文献   

19.
Erickson JL 《Fly》2011,5(3):266-271
As early as 1964 it was suggested that simple diffusion of morphogens away from their secretion source did not provide an adequate explanation for the formation and maintenance of morphogen gradients. Involvement of the endosome in morphogen distribution models provides an explanation for the slow, directional movement of morphogens, as well as their ability to form intracellular and extracellular gradients independent of morphogen production rates. Drosophila melanogaster morphogens Wg and Dpp form stable, steep, long-range gradients that specify the polarity of the wing disc. The process of endocytosis is imperative to the two central themes in gradient formation: active transport facilitating long-range signaling and degradation of morphogen to sustain gradient shape. This review investigates the endomembrane-mediated processes of re-secretion, degradation and argosome transport of Wg and Dpp in the hope that a better understanding of the endomembrane system will contribute to a more accurate and comprehensive model for morphogen gradient formation and maintenance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号