首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Orth T  Reumann S  Zhang X  Fan J  Wenzel D  Quan S  Hu J 《The Plant cell》2007,19(1):333-350
PEROXIN11 (PEX11) is a peroxisomal membrane protein in fungi and mammals and was proposed to play a major role in peroxisome proliferation. To begin understanding how peroxisomes proliferate in plants and how changes in peroxisome abundance affect plant development, we characterized the extended Arabidopsis thaliana PEX11 protein family, consisting of the three phylogenetically distinct subfamilies PEX11a, PEX11b, and PEX11c to PEX11e. All five Arabidopsis PEX11 proteins target to peroxisomes, as demonstrated for endogenous and cyan fluorescent protein fusion proteins by fluorescence microscopy and immunobiochemical analysis using highly purified leaf peroxisomes. PEX11a and PEX11c to PEX11e behave as integral proteins of the peroxisome membrane. Overexpression of At PEX11 genes in Arabidopsis induced peroxisome proliferation, whereas reduction in gene expression decreased peroxisome abundance. PEX11c and PEX11e, but not PEX11a, PEX11b, and PEX11d, complemented to significant degrees the growth phenotype of the Saccharomyces cerevisiae pex11 null mutant on oleic acid. Heterologous expression of PEX11e in the yeast mutant increased the number and reduced the size of the peroxisomes. We conclude that all five Arabidopsis PEX11 proteins promote peroxisome proliferation and that individual family members play specific roles in distinct peroxisomal subtypes and environmental conditions and possibly in different steps of peroxisome proliferation.  相似文献   

2.
Proteins are targeted to the peroxisome matrix via processes that are mechanistically distinct from those used by other organelles. Protein entry into peroxisomes requires peroxin (PEX) proteins, including early-acting receptor (e.g. PEX5) and docking peroxins (e.g. PEX13 and PEX14) and late-acting PEX5-recycling peroxins (e.g. PEX4 and PEX6). We examined genetic interactions among Arabidopsis peroxin mutants and found that the weak pex13-1 allele had deleterious effects when combined with pex5-1 and pex14-2, which are defective in early-acting peroxins, as shown by reduced matrix protein import and enhanced physiological defects. In contrast, combining pex13-1 with pex4-1 or pex6-1, which are defective in late-acting peroxins, unexpectedly ameliorated mutant growth defects. Matrix protein import remained impaired in pex4-1 pex13-1 and pex6-1 pex13-1, suggesting that the partial suppression of pex4-1 and pex6-1 physiological defects by a weak pex13 allele may result from restoring the balance between import and export of PEX5 or other proteins that are retrotranslocated from the peroxisome with the assistance of PEX4 and PEX6. Our results suggest that symptoms caused by pex mutants defective in late-acting peroxins may result not only from defects in matrix protein import but also from inefficient removal of PEX5 from the peroxisomal membrane following cargo delivery.  相似文献   

3.
Plant peroxisomal proteins catalyze key metabolic reactions. Several peroxisome biogenesis PEROXIN (PEX) genes encode proteins acting in the import of targeted proteins necessary for these processes into the peroxisomal matrix. Most peroxisomal matrix proteins bear characterized Peroxisomal Targeting Signals (PTS1 or PTS2), which are bound by the receptors PEX5 or PEX7, respectively, for import into peroxisomes. Here we describe the isolation and characterization of an Arabidopsis peroxin mutant, pex7-1, which displays peroxisome-defective phenotypes including reduced PTS2 protein import. We also demonstrate that the pex5-1 PTS1 receptor mutant, which contains a lesion in a domain conserved among PEX7-binding proteins from various organisms, is defective not in PTS1 protein import, but rather in PTS2 protein import. Combining these mutations in a pex7-1 pex5-1 double mutant abolishes detectable PTS2 protein import and yields seedlings that are entirely sucrose-dependent for establishment, suggesting a severe block in peroxisomal fatty acid beta-oxidation. Adult pex7-1 pex5-1 plants have reduced stature and bear abnormally shaped seeds, few of which are viable. The pex7-1 pex5-1 seedlings that germinate have dramatically fewer lateral roots and often display fused cotyledons, phenotypes associated with reduced auxin response. Thus PTS2-directed peroxisomal import is necessary for normal embryonic development, seedling establishment, and vegetative growth.  相似文献   

4.
5.
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.Oilseed plants obtain energy for germination and early development by utilizing stored fatty acids (Graham, 2008). This β-oxidation of fatty acids to acetyl-CoA occurs in peroxisomes, organelles that also house other important metabolic reactions, including the glyoxylate cycle, several steps in photorespiration, and phytohormone production (Hu et al., 2012). For example, indole-3-butyric acid (IBA) is β-oxidized into the active auxin indole-3-acetic acid (IAA) in peroxisomes (Zolman et al., 2000, 2007, 2008; Strader et al., 2010; Strader and Bartel, 2011). Many peroxisomal metabolic pathways generate reactive oxygen species (Inestrosa et al., 1979; Hu et al., 2012), and peroxisomes also house antioxidative enzymes, like catalase and ascorbate peroxidase, to detoxify hydrogen peroxide (Wang et al., 1999; Mhamdi et al., 2012).Peroxisomes can divide by fission or be synthesized de novo from the endoplasmic reticulum (ER). Preperoxisomes with peroxisomal membrane proteins bud from the ER and fuse, allowing matrix proteins to be imported to form mature peroxisomes (van der Zand et al., 2012; Mayerhofer, 2016). Peroxin (PEX) proteins facilitate peroxisome biogenesis and matrix protein import. Most peroxins are involved in importing proteins destined for the peroxisome matrix, which are imported after recognition of a type 1 or type 2 peroxisome-targeting signal (PTS). The PTS1 is a tripeptide located at the C terminus of most peroxisome-bound proteins (Gould et al., 1989; Chowdhary et al., 2012). The less common PTS2 is a nonapeptide usually located near the N terminus (Swinkels et al., 1991; Reumann, 2004). PTS1 proteins are recognized by PEX5 (van der Leij et al., 1993; Zolman et al., 2000), PTS2 proteins are recognized by PEX7 (Marzioch et al., 1994; Braverman et al., 1997; Woodward and Bartel, 2005), and PEX7 binds to PEX5 to allow matrix protein delivery in plants and mammals (Otera et al., 1998; Hayashi et al., 2005; Woodward and Bartel, 2005). The cargo-receptor complex docks with the membrane peroxins PEX13 and PEX14 (Urquhart et al., 2000; Otera et al., 2002; Woodward et al., 2014), and PEX5 assists cargo translocation into the peroxisomal matrix (Meinecke et al., 2010) before dissociating from its cargo (Freitas et al., 2011).After cargo delivery, PEX5 is recycled to enable further rounds of cargo recruitment (Thoms and Erdmann, 2006). This process requires a set of peroxins that is implicated in ubiquitinating PEX5 so that it can be retrotranslocated back to the cytosol. PEX5 ubiquitination is best understood in yeast. In Saccharomyces cerevisiae, Pex5 is monoubiquitinated through the action of the peroxisome-tethered ubiquitin-conjugating enzyme Pex4 and the peroxisomal ubiquitin-protein ligase Pex12 (Platta et al., 2009) and returned to the cytosol with the assistance of a peroxisome-tethered ATPase complex containing Pex1 and Pex6 (Grimm et al., 2012). S. cerevisiae Pex5 also can be polyubiquitinated and targeted for proteasomal degradation (Kiel et al., 2005). The cytosolic ubiquitin-conjugating enzyme Ubc4 cooperates with the peroxisomal ubiquitin-protein ligase Pex2 to polyubiquitinate Pex5 (Platta et al., 2009). Pex10 has ubiquitin-protein ligase activity (Williams et al., 2008; Platta et al., 2009; El Magraoui et al., 2012), but whether Pex10 directly ubiquitinates Pex5 is controversial. Pex10 promotes Ubc4-dependent Pex5 polyubiquitination when Pex4 is absent (Williams et al., 2008); however, Pex10 is not essential for Pex5 mono- or polyubiquitination (Platta et al., 2009), but rather enhances both Pex4/Pex12- and Ubc4/Pex2-mediated ubiquitination (El Magraoui et al., 2012). Recycling of the PTS2 receptor PEX7 is less understood, although the Pex5 recycling pathways are implicated in shuttling and degrading Pex7 in Pichia pastoris (Hagstrom et al., 2014).Although PEX5 ubiquitination has not been directly demonstrated in plants, the implicated peroxins are conserved in Arabidopsis, and several have been connected to PEX5 retrotranslocation. The PEX4 ubiquitin-conjugating enzyme binds to PEX22, which is predicted to be a peroxisomal membrane protein based on ability to restore peroxisome function to yeast mutants (Zolman et al., 2005). The pex4-1 mutant displays increased membrane-associated PEX5 (Ratzel et al., 2011; Kao and Bartel, 2015), suggesting that ubiquitin supplied by PEX4 promotes PEX5 retrotranslocation. PEX1 and PEX6 are members of the ATPases associated with diverse cellular activities (AAA) family and are tethered to peroxisomes by the peroxisomal membrane protein PEX26 (Goto et al., 2011; Li et al., 2014). The pex6-1 mutant displays PTS1 import defects and decreased PEX5 levels (Zolman and Bartel, 2004), suggesting that impaired PEX5 recycling can lead to increased PEX5 degradation. Indeed, pex4-1 restores PEX5 levels in the pex6-1 mutant (Ratzel et al., 2011), suggesting that Arabidopsis PEX4 also is involved in PEX5 ubiquitination and degradation when retrotranslocation is impeded.In addition to allowing for further rounds of PTS1 cargo import, several lines of evidence suggest that in the absence of efficient retrotranslocation, PEX5 retention in the peroxisomal membrane impairs peroxisome function. Slightly reducing levels of the PEX13 docking peroxin ameliorates the physiological defects of pex4-1 without restoring matrix protein import (Ratzel et al., 2011), presumably because decreasing PEX5 docking reduces its accumulation in the peroxisomal membrane. In addition, overexpressing PEX5 exacerbates rather than ameliorates the peroxisomal defects of pex4-1 (Kao and Bartel, 2015), suggesting that pex4-1 defects are linked to excessive PEX5 lingering in the peroxisome membrane rather than a lack of PEX5 available for import.The three Really Interesting New Gene (RING) peroxins (PEX2, PEX10, and PEX12) from Arabidopsis each possesses in vitro ubiquitin-protein ligase activity (Kaur et al., 2013). Null mutations in the RING peroxin genes confer embryo lethality in Arabidopsis (Hu et al., 2002; Schumann et al., 2003; Sparkes et al., 2003; Fan et al., 2005; Prestele et al., 2010), necessitating other approaches to study the in vivo functions of these peroxins. Expressing RING peroxins with mutations in the C-terminal zinc-binding RING domains (ΔZn) confers matrix protein import defects for PEX2-ΔZn and photorespiration defects for PEX10-ΔZn but no apparent defects for PEX12-ΔZn (Prestele et al., 2010). Targeting individual RING peroxins using RNAi confers β-oxidation deficiencies and impairs PTS1 cargo import (Fan et al., 2005; Nito et al., 2007). A screen for delayed matrix protein degradation (Burkhart et al., 2013) uncovered a missense pex2-1 mutant and a splicing pex10-2 mutant that both display PTS1 import defects (Burkhart et al., 2014), suggesting roles in regulating the PTS1 receptor, PEX5. A missense pex12 mutant (aberrant peroxisome morphology 4, apm4) has defects in β-oxidation and PTS1 import and increased membrane-associated PEX5 (Mano et al., 2006). These findings highlight the essential roles of the RING peroxins in Arabidopsis development and peroxisomal functions, but the RING peroxin interactions and the individual roles of the RING peroxins in PEX5 retrotranslocation remain incompletely understood.In this study, we describe a missense pex12-1 mutant recovered from a forward genetic screen for β-oxidation deficient mutants. The pex12-1 mutant displayed severe peroxisomal defects, including reduced growth, β-oxidation deficiencies, matrix protein import defects, and inefficient processing of PTS2 proteins. Comparing single and double mutants with impaired RING peroxins revealed that each RING peroxin contributes to complex stability and influences PEX5 accumulation. Furthermore, decreasing PEX4 function ameliorated pex12-1 defects, suggesting that the Glu-to-Lys substitution in pex12-1 lures ubiquitination, perhaps by pex12-1 itself, leading to PEX4-dependent degradation of the mutant protein.  相似文献   

6.
Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal β-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.  相似文献   

7.
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.  相似文献   

8.
In higher plants, peroxisomes accomplish a variety of physiological functions such as lipid catabolism, photorespiration and hormone biosynthesis. Recently, many factors regulating peroxisomal biogenesis, so-called PEX genes, have been identified not only in plants but also in yeasts and mammals. In the Arabidopsis genome, the presence of at least 22 PEX genes has been proposed. Here, we clarify the physiological functions of 18 PEX genes for peroxisomal biogenesis by analyzing transgenic Arabidopsis plants that suppressed the PEX gene expression using RNA interference. The results indicated that the function of these PEX genes could be divided into two groups. One group involves PEX1, PEX2, PEX4, PEX6, PEX10, PEX12 and PEX13 together with previously characterized PEX5, PEX7 and PEX14. Defects in these genes caused loss of peroxisomal function due to misdistribution of peroxisomal matrix proteins in the cytosol. Of these, the pex10 mutant showed pleiotropic phenotypes that were not observed in any other pex mutants. In contrast, reduced peroxisomal function of the second group, including PEX3, PEX11, PEX16 and PEX19, was induced by morphological changes of the peroxisomes. Cells of the pex16 mutant in particular possessed reduced numbers of large peroxisome(s) that contained unknown vesicles. These results provide experimental evidence indicating that all of these PEX genes play pivotal roles in regulating peroxisomal biogenesis. We conclude that PEX genes belonging to the former group are involved in regulating peroxisomal protein import, whereas those of the latter group are important in maintaining the structure of peroxisome.  相似文献   

9.
Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants.  相似文献   

10.
Peroxisomes are independent organelles found in virtually all eukaryotic cells. Genetic studies have identified more than 20 PEX genes that are required for peroxisome biogenesis. The role of most PEX gene products, peroxins, remains to be determined, but a variety of studies have established that Pex5p binds the type 1 peroxisomal targeting signal and is the import receptor for most newly synthesized peroxisomal matrix proteins. The steady-state abundance of Pex5p is unaffected in most pex mutants of the yeast Pichia pastoris but is severely reduced in pex4 and pex22 mutants and moderately reduced in pex1 and pex6 mutants. We used these subphenotypes to determine the epistatic relationships among several groups of pex mutants. Our results demonstrate that Pex4p acts after the peroxisome membrane synthesis factor Pex3p, the Pex5p docking factors Pex13p and Pex14p, the matrix protein import factors Pex8p, Pex10p, and Pex12p, and two other peroxins, Pex2p and Pex17p. Pex22p and the interacting AAA ATPases Pex1p and Pex6p were also found to act after Pex10p. Furthermore, Pex1p and Pex6p were found to act upstream of Pex4p and Pex22p. These results suggest that Pex1p, Pex4p, Pex6p, and Pex22p act late in peroxisomal matrix protein import, after matrix protein translocation. This hypothesis is supported by the phenotypes of the corresponding mutant strains. As has been shown previously for P. pastoris pex1, pex6, and pex22 mutant cells, we show here that pex4Delta mutant cells contain peroxisomal membrane protein-containing peroxisomes that import residual amounts of peroxisomal matrix proteins.  相似文献   

11.
Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.  相似文献   

12.
The peroxisome biogenesis disorders (PBDs) are currently difficult-to-treat multiple-organ dysfunction disorders that result from the defective biogenesis of peroxisomes. Genes encoding Peroxins, which are required for peroxisome biogenesis or functions, are known causative genes of PBDs. The human peroxin genes PEX3 or PEX16 are required for peroxisomal membrane protein targeting, and their mutations cause Zellweger syndrome, a class of PBDs. Lack of understanding about the pathogenesis of Zellweger syndrome has hindered the development of effective treatments. Here, we developed potential Drosophila models for Zellweger syndrome, in which the Drosophila pex3 or pex16 gene was disrupted. As found in Zellweger syndrome patients, peroxisomes were not observed in the homozygous Drosophila pex3 mutant, which was larval lethal. However, the pex16 homozygote lacking its maternal contribution was viable and still maintained a small number of peroxisome-like granules, even though PEX16 is essential for the biosynthesis of peroxisomes in humans. These results suggest that the requirements for pex3 and pex16 in peroxisome biosynthesis in Drosophila are different, and the role of PEX16 orthologs may have diverged between mammals and Drosophila. The phenotypes of our Zellweger syndrome model flies, such as larval lethality in pex3, and reduced size, shortened longevity, locomotion defects, and abnormal lipid metabolisms in pex16, were reminiscent of symptoms of this disorder, although the Drosophila pex16 mutant does not recapitulate the infant death of Zellweger syndrome. Furthermore, pex16 mutants showed male-specific sterility that resulted from the arrest of spermatocyte maturation. pex16 expressed in somatic cyst cells but not germline cells had an essential role in the maturation of male germline cells, suggesting that peroxisome-dependent signals in somatic cyst cells could contribute to the progression of male germ-cell maturation. These potential Drosophila models for Zellweger syndrome should contribute to our understanding of its pathology.  相似文献   

13.
pex mutants are defective in peroxisome assembly. The mutant strain pex23-1 of the yeast Yarrowia lipolytica lacks morphologically recognizable peroxisomes and mislocalizes all peroxisomal matrix proteins investigated preferentially to the cytosol. pex23 strains accumulate vesicular structures containing both peroxisomal matrix and membrane proteins. The PEX23 gene was isolated by functional complementation of the pex23-1 strain and encodes a protein, Pex23p, of 418 amino acids (47,588 Da). Pex23p exhibits high sequence similarity to two hypothetical proteins of the yeast Saccharomyces cerevisiae. Pex23p is an integral membrane protein of peroxisomes that is completely, or nearly completely, sequestered from the cytosol. Pex23p is detected at low levels in cells grown in medium containing glucose, and its levels are significantly increased by growth in medium containing oleic acid, the metabolism of which requires intact peroxisomes.  相似文献   

14.
Peroxisomes rely on peroxins(PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX_16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum(ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX_16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX_16 action. The only reported pex_16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable,complicating analysis of PEX_16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex_16 alleles that accumulate negligible PEX_16 protein levels. Both mutants displayed impaired peroxisome function-slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover,one pex_16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX_16 gene, these viable pex_16 alleles allow assessment of the importance of Arabidopsis PEX_16 and its functional domains.  相似文献   

15.
Khan BR  Zolman BK 《Plant physiology》2010,154(4):1602-1615
PEX5 and PEX7 are receptors required for the import of peroxisome-bound proteins containing one of two peroxisomal targeting signals (PTS1 or PTS2). To better understand the role of PEX5 in plant peroxisomal import, we characterized the Arabidopsis (Arabidopsis thaliana) pex5-10 mutant, which has a T-DNA insertion in exon 5 of the PEX5 gene. Sequencing results revealed that exon 5, along with the T-DNA, is removed in this mutant, resulting in a truncated pex5 protein. The pex5-10 mutant has germination defects and is completely dependent on exogenous Suc for early seedling establishment, based on poor utilization of seed-storage fatty acids. This mutant also has delayed development and reduced fertility, although adult pex5-10 plants appear normal. Peroxisomal metabolism of indole-3-butyric acid, propionate, and isobutyrate also is disrupted. The pex5-10 mutant has reduced import of both PTS1 and PTS2 proteins, and enzymatic processes that occur in peroxisomes are disrupted. To specifically study the import and importance of PTS1 proteins, we made a truncated PEX5 construct lacking the PTS1-binding region (PEX5(454)). Transformation of this construct into pex5-10 resulted in the rescue of PTS2 import, thereby creating a line with PTS1-specific import defects. The pex5-10 (PEX5(454)) plants still had developmental defects, although restoring PTS2 import resulted in a less severe mutant phenotype. Comparison of pex5-10 and pex5-10 (PEX5(454)) phenotypes can separate the import mechanisms for enzymes acting in different peroxisomal processes, including indole-3-butyric acid/2,4-dichlorophenoxybutyric acid oxidation, isobutyrate and propionate metabolism, and photorespiration.  相似文献   

16.
Peroxisomes are dynamic organelles crucial for a variety of metabolic processes during the development of eukaryotic organisms, and are functionally linked to other subcellular organelles, such as mitochondria and chloroplasts. Peroxisomal matrix proteins are imported by peroxins (PEX proteins), yet the modulation of peroxin functions is poorly understood. We previously reported that, besides its known function in chloroplast protein import, the Arabidopsis E3 ubiquitin ligase SP1 (suppressor of ppi1 locus1) also targets to peroxisomes and mitochondria, and promotes the destabilization of the peroxisomal receptor–cargo docking complex components PEX13 and PEX14. Here we present evidence that in Arabidopsis, SP1's closest homolog SP1‐like 1 (SPL1) plays an opposite role to SP1 in peroxisomes. In contrast to sp1, loss‐of‐function of SPL1 led to reduced peroxisomal β‐oxidation activity, and enhanced the physiological and growth defects of pex14 and pex13 mutants. Transient co‐expression of SPL1 and SP1 promoted each other's destabilization. SPL1 reduced the ability of SP1 to induce PEX13 turnover, and it is the N‐terminus of SP1 and SPL1 that determines whether the protein is able to promote PEX13 turnover. Finally, SPL1 showed prevalent targeting to mitochondria, but rather weak and partial localization to peroxisomes. Our data suggest that these two members of the same E3 protein family utilize distinct mechanisms to modulate peroxisome biogenesis, where SPL1 reduces the function of SP1. Plants and possibly other higher eukaryotes may employ this small family of E3 enzymes to differentially modulate the dynamics of several organelles essential to energy metabolism via the ubiquitin‐proteasome system.  相似文献   

17.
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail‐anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β‐oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome‐associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.  相似文献   

18.
We identified two proteins, Pex25 and Rho1, which are involved in reintroduction of peroxisomes in peroxisome-deficient yeast cells. These are, together with Pex3, the first proteins identified as essential for this process. Of the three members of the Hansenula polymorpha Pex11 protein family-Pex11, Pex25, and Pex11C-only Pex25 was required for reintroduction of peroxisomes into a peroxisome-deficient mutant strain. In peroxisome-deficient pex3 cells, Pex25 localized to structures adjacent to the ER, whereas in wild-type cells it localized to peroxisomes. Pex25 cells were not themselves peroxisome deficient but instead contained a slightly increased number of peroxisomes. Interestingly, pex11 pex25 double deletion cells, in which both peroxisome fission (due to the deletion of PEX11) and reintroduction (due to deletion of PEX25) was blocked, did display a peroxisome-deficient phenotype. Peroxisomes reappeared in pex11 pex25 cells upon synthesis of Pex25, but not of Pex11. Reintroduction in the presence of Pex25 required the function of the GTPase Rho1. These data therefore provide new and detailed insight into factors important for de novo peroxisome formation in yeast.  相似文献   

19.
Peroxins are proteins required for peroxisome assembly and are encoded by the PEX genes. Functional complementation of the oleic acid-nonutilizing strain mut1-1 of the yeast Yarrowia lipolytica has identified the novel gene, PEX24. PEX24 encodes Pex24p, a protein of 550 amino acids (61,100 Da). Pex24p is an integral membrane protein of peroxisomes that exhibits high sequence homology to two hypothetical proteins encoded by the open reading frames YHR150W and YDR479C of the Saccharomyces cerevisiae genome. Pex24p is detectable in wild-type cells grown in glucose-containing medium, and its levels are significantly increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex24 mutants are compromised in the targeting of both matrix and membrane proteins to peroxisomes. Although pex24 mutants fail to assemble functional peroxisomes, they do harbor membrane structures that contain subsets of peroxisomal proteins.  相似文献   

20.
PEX genes encode peroxins, which are required for the biogenesis of peroxisomes. The Yarrowia lipolytica PEX17 gene encodes the peroxin Pex17p, which is 671 amino acids in length and has a predicted molecular mass of 75,588 Da. Pex17p is peripherally associated with the peroxisomal membrane. The carboxyl-terminal tripeptide, Gly-Thr-Leu, of Pex17p is not necessary for its targeting to peroxisomes. Synthesis of Pex17p is low in cells grown in glucose-containing medium and increases after the cells are shifted to oleic acid-containing medium. Cells of the pex17-1 mutant, the original mutant strain, and the pex17-KA mutant, a strain in which most of the PEX17 gene is deleted, fail to form normal peroxisomes but instead contain numerous large, multimembraned structures. The import of peroxisomal matrix proteins in these mutants is selectively impaired. This selective import is not a function of the nature of the peroxisomal targeting signal. We suggest a regulatory role for Pex17p in the import of a subset of matrix proteins into peroxisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号