首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The ultrastructure of mouse blastocysts with nascent and expanded blastocoele is described. In the early blastocyst cells adhere tightly and the blastocoele is often limited at its apex by cells containing a midbody. The expanding blastocyst exhibits a loose cell arrangement due to the presence of intercellular spaces and a cortical layer of filaments develops in cells enclosing the expanded blastocoele. When the blastocoele exceeds 1/2 the embryo diameter desmosomes appear between trophectoderm cells. Possible factors essential for blastocoele formation are discussed.  相似文献   

3.
Horseradish peroxidase (HRP), together with Fast Green or rhodamine-conjugated dextran (RDX), was used as an intracellular lineage tracer to determine cell fate in the polar trophectoderm of 3.5-day-old mouse embryos. In HRP-injected midstage (approximately 39-cell) and expanded (approximately 65-cell) blastocysts incubated for 24 hr, the central polar trophectoderm cell was displaced from the embryonic pole an average of 20 micron (5% of blastocyst circumference) and 29 micron (6% of blastocyst circumference), respectively. Expanded blastocysts injected with HRP + Fast Green and incubated for 24 hr or with HRP + RDX and incubated for 48 hr showed a displacement of 24 micron (4% of blastocyst circumference) and 88 micron (14% of blastocyst circumference), respectively. Up to 10 HRP-positive trophectoderm cells were observed among embryos incubated for 48 hr, indicating that in those cases, the labeled progenitor cells had divided at least three times. Our observations show that the central polar trophectoderm cell divides in the plane of the trophectoderm in expanded blastocysts and, along with its descendants, is displaced toward the mural trophectoderm. The systematic tandem displacement of labeled cells and their descendants toward the abembryonic pole suggests the presence of a proliferative area at the embryonic pole of the blastocyst. Large shifts in inner cell mass (ICM) position in relation to the trophectoderm do not occur during blastocyst expansion. Furthermore, random movements within the polar trophectoderm population do not account for the replacement of labeled cells by unlabeled polar trophectoderm cells. Rather, we propose the hypothesis that the ICM contributes these replacement cells to the polar trophectoderm during blastocyst expansion.  相似文献   

4.
A scoring scheme was devised to characterize visually the morphological differentiation of whole-mount, unfixed mouse blastocysts. Embryos were recovered from groups of intact mice (implanting embryos) and mice ovariectomized on Day 3 of pregnancy (implantation-delayed embryos) every 3 h from 18:00 h on Day 4 until 12:00 h on Day 5. Blastocyst differentiation was assessed according to the presence of a zona pellucida, the appearance of the outer margin of trophectoderm cells, the visibility of the blastocoele and the relative size of the inner cell mass. The results obtained indicate that, during this period, implanting and implantation-delayed mouse blastocysts lose the zona as well as exhibit rounded trophectoderm cells, an enlarged inner cell mass and an increasing opacity of the blastocoele. In contrast, the trophectoderm cells of implanting blastocysts only exhibit extensive cytoplasmic projections, probably due to remodelling of the intracellular cytoskeleton. Growth of the inner cell mass appeared to precede the other morphological changes in the majority of blastocysts, and thus might be a prerequisite for further differentiation. The rate of blastocyst differentiation and the survival of embryos were adversely affected by the condition of delayed implantation, induced by ovariectomy. This study suggests that the appearance of cytoplasmic projections from trophectoderm cells is central to the control of blastocyst implantation.  相似文献   

5.
At the blastocyst stage of pre-implantation mouse development, close contact of polar trophectoderm with the inner cell mass (ICM) promotes proliferation of undifferentiated diploid trophoblast. However, ICM/polar trophectoderm intimacy is not maintained during post-implantation development, raising the question of how growth of undifferentiated trophoblast is controlled during this time. The search for the cellular basis of trophoblast proliferation in post-implantation development was addressed with an in vitro spatial and temporal analysis of fibroblast growth factor 4-dependent trophoblast stem cell potential. Two post-implantation derivatives of the polar trophectoderm - early-streak extra-embryonic ectoderm and late-streak chorionic ectoderm - were microdissected into fractions along their proximodistal axis and thoroughly dissociated for trophoblast stem cell culture. Results indicated that cells with trophoblast stem cell potential were distributed throughout the extra-embryonic/chorionic ectoderm, an observation that is probably attributable to non-coherent growth patterns exhibited by single extra-embryonic ectoderm cells at the onset of gastrulation. Furthermore, the frequency of cells with trophoblast stem cell potential increased steadily in extra-embryonic/chorionic ectoderm until the first somite pairs formed, decreasing thereafter in a manner independent of proximity to the allantois. Coincident with occlusion of the ectoplacental cavity via union between chorionic ectoderm and the ectoplacental cone, a decline in the frequency of mitotic chorionic ectoderm cells in vivo, and of trophoblast stem cell potential in vitro, was observed. These findings suggest that the ectoplacental cavity may participate in maintaining proliferation throughout the developing chorionic ectoderm and, thus, in supporting its stem cell potential. Together with previous observations, we discuss the possibility that fluid-filled cavities may play a general role in the development of tissues that border them.  相似文献   

6.
Development of the blastocyst to implantation competency, differentiation of the uterus to the receptive state, and a cross talk between the implantation-competent blastocyst and the uterine luminal epithelium are all essential to the process of implantation. In the present investigation, we examined the possibility for a potential cross talk between the blastocyst and uterus involving the ezrin/radixin/moesin (ERM) proteins and ERM-associated cytoskeletal cross-linker proteins CD43, CD44, ICAM-1, and ICAM-2. In normal Day 4 blastocysts and after rendering dormant blastocysts to implantation-competent by estrogen in vivo (activated), the outer surface of mural trophectoderm cells showed much higher levels of radixin as compared to those in the polar trophectoderm cells, inner cell mass (ICM), and primitive endoderm. In contrast, ezrin was present on both the mural and the polar trophectoderm cell surfaces of normal Day 4 and activated blastocysts at higher intensity than dormant blastocysts. A distinct localization was noted in the primitive endoderm of dormant blastocysts that was not apparent in activated or normal Day 4 blastocysts. The expression of moesin was modestly higher at the mural trophectoderm of implantation-competent blastocysts, while the localization appeared to be present primarily on the polar trophectoderm cell surface of Day 4 blastocysts. The localization of ERM-associated adhesion molecules CD43, CD44, and ICAM-2 was more intense in the implantation-competent blastocysts compared with the dormant blastocysts. However, while CD44 was present both in the trophectoderm and in ICM, CD43 and ICAM-2 were localized primarily to the trophectoderm. The signal for ICAM-1 was very intense in the ICM but was modest in the trophectoderm. No significant changes in fluorescence intensity were noted between activated and dormant blastocysts. In the receptive uterus on Day 4 of pregnancy, ERM proteins were localized to the uterine epithelium, while on Day 5 the localization, especially of radixin and moesin, extended to the stroma surrounding the implantation chamber. With respect to ERM-associated adhesion molecules, while CD44 and ICAM-1 were exclusively localized in the stroma on Day 4, CD43 and ICAM-2 were localized to the epithelium. On Day 5, the localization of CD44 and ICAM-1 became highly concentrated in the antimesometrial stroma of the implantation chamber. The localization of CD43 and ICAM-2 remained mostly epithelial, although some stromal localization of CD43 was noted on Day 5. These results suggest that differential expression and distribution of ERM proteins and ERM-associated adhesion molecules are involved in the construction of the cellular architecture necessary for blastocyst activation and uterine receptivity leading to successful implantation.  相似文献   

7.
Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.  相似文献   

8.
Amine oxidases, programmed cell death, and tissue renewal   总被引:1,自引:0,他引:1  
Embryonal carcinoma cells, with embryonic (ECaE) or trophectodermal (ECaT) potential, have been used in a colony assay to determine regulatory mechanisms in the blastocyst. The mechanism that regulates ECaE and results in chimera formation is dependent upon a soluble factor in blastocoele fluid and contact with trophectoderm. Two mechanisms contribute to the regulation of ECaT: one involves a factor in blastocoele fluid and the other contact with either trophectoderm or inner cell mass which results in differentiation of the cells into trophectoderm, and the other involves the killing of at least 40% of the cells by blastocoele fluid alone. This cytotoxic activity probably causes the programmed cell death that occurs in the inner cell mass during blastulation as it loses the potential to differentiate into trophectoderm. A toxic activity similar to that of normal blastocysts has been obtained from embryoid bodies. This activity is caused by amine oxidase-dependent catabolism of polyamines, and it is postulated that programmed cell death in the embryo and chalone activity in the adult may have similar mechanisms.  相似文献   

9.
In the human morula, tight junctions are found between all cell pairs, at all levels of cellular apposition, associated with underlying masses of microfilaments. In cavitating morula, lanthanum tracer gained access to the intracellular spaces, except at the intersections with nascent extracellular cavities, marking the first assembly of zonulae occludentes. Presumptive trophectoderm cells contained vacuoles and larger cavities often associated with secondary lysosome-like bodies. Since the vacuoles and intracellular and extracellular cavities contain electron-dense polygranules of about 23 nm diameter, they may have common origins. In trophectoderm cells of the early blastocytes, the large intracellular vacuoles and cavities were absent, and the zonulae occludentes were located apically. Mechanisms for nascent blastocoele formation are discussed.  相似文献   

10.
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.  相似文献   

11.
Trophectoderm of the preimplantation mouse blastocyst is composed of two cell subpopulations relative to their proximity to the inner cell mass. The polar trophectoderm overlying the inner cell mass proliferates to form the ectoplacental cone, and the mural trophectoderm endoreplicates and gives rise to giant cells. We examined specific differences in the two trophectoderm cell populations using a lectin (Dolichos biflorus) to detect cell surface characteristics and a simple sugar (D-Gal) to detect differences in incorporation. During the first day of delayed implantation, the mural trophectoderm presented twice as many lectin binding sites as did the polar trophectoderm. The mural trophectoderm of both nondelaying and delayed implantation blastocysts showed a greater rate of incorporation of the tritiated sugar by presenting more reduced silver grains in radioautograms. These results indicate that the mural trophectoderm and polar trophectoderm are two distinct cell types in the periimplantation blastocyst.  相似文献   

12.
In a previous study of mouse tetraploid<-->diploid chimaeric blastocysts, tetraploid cells were found to be more abundant in the trophectoderm than the inner cell mass (ICM) and more abundant in the mural trophectoderm than the polar trophectoderm. This non-random allocation of tetraploid cells to different regions of the chimaeric blastocyst may contribute to the restricted tissue distribution seen in post-implantation stage tetraploid<-->diploid chimaeras. However, the tetraploid and diploid embryos that were aggregated together differed in several respects: the tetraploid embryos had fewer cells and these cells were bigger and differed in ploidy. Each of these factors might underlie a non-random allocation of tetraploid cells to the chimaeric blastocyst. A combination of micromanipulation and electrofusion was used to produce two series of chimaeras that distinguished between the effects of cell size and ploidy on the allocation of cells to different tissues in chimaeric blastocysts. When aggregated cells differed in cell size but not ploidy, the derivatives of the larger cell contributed significantly more to the mural trophectoderm and polar trophectoderm than the ICM. When aggregated cells differed in ploidy but not cell size, the tetraploid cells contributed significantly more to the mural trophectoderm than the ICM. In both experiments the contributions to the polar trophectoderm tended to be intermediate between those of the mural trophectoderm and ICM. These experiments show that both the larger size and increased ploidy of tetraploid cells could have contributed to the non-random cell distribution that was observed in a previous study of tetraploid<-->diploid chimaeric blastocysts.  相似文献   

13.
This study examined whether development of bovine in vitro produced (IVP) blastocysts in the sheep uterus resulted in morphologically and karyotypically normal elongation stage bovine blastocysts. Seven day IVP bovine blastocysts, resulting from either in vitro maturation and fertilization, nuclear transfer (NT), or parthenogenic activation, were surgically transferred at the blastocyst stage into sheep uteri. Sheep were sacrificed after 7-9 days, and blastocysts were flushed from their uteri. One of each kind of IVP bovine blastocyst was recovered from sheep uteri for analysis by transmission electron microscopy, and nine NT blastocysts were used to establish cell cultures that were analysed for chromosome complement. TEM analysis of in vivo-derived elongation stage bovine and ovine blastocysts was done for comparative purposes. Most ultrastructural features of the 13-19 day blastocysts were similar to earlier stage blastocysts except that distinct alternative mitochondrial morphologies were found between epiblast and trophectoderm cells. Monociliated cells, presumably nodal cells, were observed in the bovine epiblast and hypoblast, and retrovirus-like particles were elaborated by cells in these same areas. Development in the sheep uterus of IVP bovine blastocysts resulted in the presence of crystalloid bodies in the trophectoderm cells, and apoptotic and necrotic cells were observed in the epiblast tissue. Thus, in vivo incubation in the sheep uterus allowed nearly normal development to the elongated blastocyst stage and may be useful for assessment of NT bovine blastocyst developmental competence. Cell cultures derived from the NT blastocysts had normal chromosome complements suggesting that activation by ionomycin and 6-dimethyl-aminopurine did not cause detrimental changes in ploidy in those blastocysts that developed.  相似文献   

14.
The origin of the extraembryonic ectoderm of the chorion in the mouse embryo has long been the source of some controversy. Various manipulative studies suggested that it arose from the trophectoderm and not the inner cell mass (ICM) of the blastocyst. However, recent studies on the development of isolated ICMs in vitro have reported the formation of tissues morphologically resembling extraembryonic ectoderm. One explanation not excluded by previous studies is that the chorionic ectoderm is of dual origin, from both ICM and trophectoderm. The present study provides a more detailed analysis than previously possible of the in vivo fate of ICMs in chimeras, using a sensitive assay for glucose phosphate isomerase (GPI) isozymes which permits study of the chorionic ectoderm alone. In a large series of blastocyst injection chimeras, no donor ICM contribution to the mature chorionic ectoderm could be detected, donor activity appearing only in the embryonic fraction. Thus, the in vitro results cannot be readily explained by dual origin of the chorionic ectoderm and remain in conflict with existing in vivo data. Analysis of most ICM/morula chimeras revealed the same pattern, but a few showed ICM contributions to the trophoblast fractions, suggesting that some ICM cells retain the potential to form trophectoderm derivatives in vivo.  相似文献   

15.
The ability of trophectoderm (TE) cells to produce chimeric mice (pluripotency) was compared with that of inner cell mass (ICM) cells. TE and ICM cells of blastocysts and hatching or hatched blastocysts derived from albino mice (CD-1, Gpi-1a/a) were aggregated with zona cut 8- to 16-cell stage embryos or injected into the blastocoele from non-albino mice (C57BL/6 x C3H/He, Gpi-1b/b). After transfer to pseudopregnant female mice, the contribution of the donor cells was examined by glucose phosphate isomerase (GPI) analysis of embryos, membrane and placenta at mid-gestation (Day 10.5 and 12.5) or by the coat color of newborn mice. In contrast to ICM cells, there was no contribution of TE cells in the conceptuses and no coat color chimeric young were obtained. After pre-labeling of TE cells with fluorescent latex microparticles, they were aggregated with embryos and the allocation of TE cells at the compacted morula and blastocyst stages was observed under a fluorescent microscope. Although the TE cells were observed attached onto the surface of the embryos at morula and blastocyst stages, unlike the ICM cells, they were not positively incorporated into the embryos. Thus, the pluripotency of TE cells from mouse blastocysts was not induced by the aggregation and injection methods.  相似文献   

16.
17.
The bovine blastocyst hatches 8 to 9 days after fertilization, and this is followed by several days of preimplantation development during which the embryo transforms from a spherical over an ovoid to an elongated shape. As the spherical embryo enlarges, the cells of the inner cell mass differentiate into the hypoblast and epiblast, which remain surrounded by the trophectoderm. The formation of the hypoblast epithelium is also accompanied by a change in the fluid within the embryo, i.e., the blastocoel fluid gradually alters to become the primitive yolk sac (YS) fluid. Our previous research describes the protein composition of human and bovine blastocoel fluid, which is surrounded by the trophectoderm and undifferentiated cells of the inner cell mass. In this study, we further examine the changes in the protein composition in both the primitive YS fluid and the embryonic cells during early and slightly later stage cell differentiation in the developing bovine embryo. In vitro–produced Day 6 embryos were transferred into a recipient heifer and after 7 days of further in vivo culture, ovoid and elongated Day 13 embryos were recovered by flushing both uterine horns after slaughter. The primitive YS fluid and cellular components were isolated from 12 ovoid and three elongated embryos and using nano-high-performance liquid chromatography, tandem mass spectrometry, and isobaric tag for relative and absolute quantitation proteomic analysis, a total of 9652 unique proteins were identified. We performed GO term and keyword analyses of differentially expressed proteins in the fluid and the cells of the two embryonic stages, along with a discussion of the biological perspectives of our data with relation to morphogenesis and embryo-maternal communication. Our study thereby provides a considerable contribution to the current knowledge of bovine preimplantation development.  相似文献   

18.
The mouse blastocyst forms during the 32-cell stage with the emergence of the blastocoelic cavity. This developmental transition is dependent upon the differentiation and transport function of the trophectoderm epithelium which forms the wall of the blastocyst and exhibits functional intercellular tight junctions (TJs) to maintain epithelial integrity during blastocoele expansion. To investigate mechanisms regulating the timing of blastocyst formation, we have examined the dynamics of expression of occludin, an integral membrane protein of the TJ. Confocal microscopy of intact embryos and synchronised cell clusters revealed that occludin first assembles at the apicolateral membrane contact site between nascent trophectoderm cells usually during the early 32-cell stage, just prior to the time of blastocoele cavitation. This is a late event in the assembly of TJ-associated proteins within trophectoderm which, from our previous data, spans from 8- to 32-cell stages. Occludin membrane assembly is dependent upon prior E-cadherin-mediated cell-cell adhesion and is sensitive to brefeldin A, an inhibitor of Golgi-to-membrane transport. Occludin is delivered to the TJ site in association with the TJ plaque protein, ZO-1(&agr;)+, which we have shown previously is newly transcribed and translated during late cleavage. Immediately after assembly and before cavitation, occludin localised at the TJ site switches from a Triton X-100-soluble to -insoluble form indicative of actin cytoskeletal and/or membrane anchorage. Occludin mRNA and protein are detectable throughout cleavage by RT-PCR and immunoblotting, respectively, indicating that timing of membrane assembly is not controlled by expression alone. Rather, we have identified changes in the pattern of different occludin forms expressed during cleavage which, using phosphatase treatment of embryo lysates, include post-translational modifications. We propose that the phosphorylation of one form of occludin (band 2, 65-67 kDa) during late cleavage, which leads to its exclusive conversion from a Triton X-100-soluble to -insoluble pool, may regulate occludin association with ZO-1(&agr;)+ and membrane assembly, and thereby act to control completion of TJ biogenesis and the timing of blastocyst formation.  相似文献   

19.
The degree of fragmentation during early cleavage is universally used as an indicator of embryo quality during human in vitro fertilization treatment. Extensive fragmentation has been associated with reduced blastocyst formation and implantation. We examined the relationship between early fragmentation and subsequent allocation of cells to the trophectoderm and inner cell mass in the human blastocyst. We retrospectively analyzed data from 363 monospermic human embryos that exhibited varying degrees of fragmentation on Day 2. Embryos were cultured from Day 2 to Day 6 in Earle balanced salt solution with 1 mM glucose and human serum albumin. Rates of development and blastocyst formation were measured. The number of cells in the trophectoderm and inner cell mass and the incidence of apoptosis were assessed following differential labeling with polynucleotide-specific fluorochromes. Increasing fragmentation resulted in reduced blastocyst formation and lower blastocyst cell numbers. For minimal and moderate levels of fragmentation, the reduction in cell numbers was confined largely to the trophectoderm and a steady number of inner cell mass cells was maintained. However, with extensive fragmentation of more than 25%, cell numbers in both lineages were reduced in the few embryos that formed blastocysts. Apoptotic nuclei were present in both the trophectoderm and inner cell mass, with the lowest incidence in blastocysts that had developed from embryos with minor (5-10%) fragmentation. Paradoxically, higher levels of apoptosis were seen in embryos of excellent morphology, suggesting a possible role in regulation of cell number.  相似文献   

20.
The major basic protein (BP) synthesized and secreted by elongating pig blastocysts was purified from medium of Day 14-17 conceptus cultures. Sequential ion-exchange and gel-filtration chromatographies resulted in isolation of BP as a single polypeptide of Mr = 43,100 or 42,800 under denaturing or native conditions, respectively. BP was found to be a glycoprotein by incorporation of [3H] glucosamine and susceptibility to N-glycopeptidase F. Two BP polypeptides were produced by N-glycopeptidase F (Mr = 39,800 and 36,300). Antiserum to BP immunoprecipitated radiolabeled BP from blastocyst culture medium. BP was not detected in medium from 1-2 mm diameter spherical (Day 10) blastocysts but was found in medium from 3-5 mm spherical (Day 10) and filamentous (less than 50 cm, Day 12) conceptuses, suggesting that BP synthesis and secretion began at the initiation of trophoblast expansion. With immunocytochemical procedures, BP was located in the apical cytoplasm of trophectoderm cells of Day 11 expanding (5-7 and 10-20 mm) blastocysts. These results suggest that trophoblast epithelium secrete BP apically toward the uterine lumen and that BP may play a role in maternal-fetal interactions during the peri-implantation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号