首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The single-stranded DNA-binding protein of Escherichia coli.   总被引:15,自引:2,他引:15       下载免费PDF全文
The single-stranded DNA-binding protein (SSB) of Escherichia coli is involved in all aspects of DNA metabolism: replication, repair, and recombination. In solution, the protein exists as a homotetramer of 18,843-kilodalton subunits. As it binds tightly and cooperatively to single-stranded DNA, it has become a prototypic model protein for studying protein-nucleic acid interactions. The sequences of the gene and protein are known, and the functional domains of subunit interaction, DNA binding, and protein-protein interactions have been probed by structure-function analyses of various mutations. The ssb gene has three promoters, one of which is inducible because it lies only two nucleotides from the LexA-binding site of the adjacent uvrA gene. Induction of the SOS response, however, does not lead to significant increases in SSB levels. The binding protein has several functions in DNA replication, including enhancement of helix destabilization by DNA helicases, prevention of reannealing of the single strands and protection from nuclease digestion, organization and stabilization of replication origins, primosome assembly, priming specificity, enhancement of replication fidelity, enhancement of polymerase processivity, and promotion of polymerase binding to the template. E. coli SSB is required for methyl-directed mismatch repair, induction of the SOS response, and recombinational repair. During recombination, SSB interacts with the RecBCD enzyme to find Chi sites, promotes binding of RecA protein, and promotes strand uptake.  相似文献   

2.
The effect of Escherichia coli single-stranded DNA binding protein (SSB) on DNA synthesis by T7 DNA polymerase and E. coli DNA polymerase I (large fragment) using native or aminofluorene-modified M13 templates was evaluated by in vitro DNA synthesis assays and polyacrylamide gel electrophoresis analysis. The two polymerase enzymes displayed differential responses to the addition of SSB. T7 DNA polymerase, a enzyme required for the replication of the T7 chromosome, was stimulated by the addition of SSB whether native or modified templates were used. On the other hand, E. coli DNA polymerase I was slightly stimulated by the addition of SSB to the native template but substantially inhibited on modified templates. This result suggests that DNA polymerase I may be able to synthesize past an aminofluorene adduct but that the presence of SSB inhibited this trans-lesion synthesis. Polyacrylamide gels of the products of DNA synthesis by polymerase I supported this inference since SSB caused a substantial increase in the accumulation of shorter DNA chains induced by blockage at the aminofluorene adduct sites.  相似文献   

3.
Escherichia coli omega protein is found to form a complex with single-stranded DNA. The complex is stable in buoyant CsCl or Cs2SO4 density gradients. Addition of Mg(II) to the concentrated salt solutions, however, leads to the dissociation of the complex, even in the presence of EDTA in molar excess over Mg(II). The dissociated omega retains its enzymatic activity; the DNA recovered from the dissociated complex is indistinguishable from the original DNA. Exposure of the complex to alkali results in the cleavage of the DNA. This cleavage generates a 3'-hydroxyl DNA terminus, and the omega protein is found linked to the 5'-terminus, presumably covalently. Pronase digestion of the complex results initially in the removal of approximately 30% of the protein. A significant fraction of the residual complex is still stable in concentrated salt solutions, and can be dissociated by Mg(II). Extensive digestion with pronase results in the removal of the protein and the cleavage of the DNA chain.  相似文献   

4.
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo(1) mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo(1) is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.  相似文献   

5.
The interaction of recA protein with single-stranded (ss) phi X174 DNA has been examined by means of a nuclease protection assay. The stoichiometry of protection was found to be 1 recA monomer/approximately 4 nucleotides of ssDNA both in the absence of a nucleotide cofactor and in the presence of ATP. In contrast, in the presence of adenosine 5'-O-(thiotriphosphate) (ATP gamma S) the stoichiometry was 1 recA monomer/approximately 8 nucleotides. No protection was seen with ADP. In the absence of a nucleotide cofactor, the binding of recA protein to ssDNA was quite stable as judged by equilibration with a challenge DNA (t1/2 approximately 30 min). Addition of ATP stimulated this transfer (t1/2 approximately 3 min) as did ADP (t1/2 approximately 0.2 min). ATP gamma S greatly reduced the rate of equilibration (t1/2 greater than 12 h). Direct visualization of recA X ssDNA complexes at subsaturating recA protein concentrations using electron microscopy revealed individual ssDNA molecules partially covered with recA protein which were converted to highly condensed networks upon addition of ATP gamma S. These results have led to a general model for the interaction of recA protein with ssDNA.  相似文献   

6.
The herpes virus-encoded DNA replication protein, infected cell protein 8 (ICP8), binds specifically to single-stranded DNA with a stoichiometry of one ICP8 molecule/12 nucleotides. In the absence of single-stranded DNA, it assembles into long filamentous structures. Binding of ICP8 inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed single-stranded DNA circles. In contrast, ICP8 greatly stimulates replication of circular duplex DNA by the polymerase. Stimulation occurs only in the presence of a nuclear extract from herpes-infected cells. Appearance of the stimulatory activity in nuclear extracts coincides closely with the time of appearance of herpes-induced DNA replication proteins including ICP8 and DNA polymerase. A viral factor(s) may therefore be required to mediate ICP8 function in DNA replication.  相似文献   

7.
P K Bandyopadhyay  C W Wu 《Biochemistry》1978,17(19):4078-4085
Nanosecond and steady-state fluorescence spectoscopy were used to probe the environment of the tryptophan residues of Escherichia coli DNA-binding protein. A spectral shift and a change in quantum yield of the protein upon binding to DNA or oligonucleotides indicate that the tryptophan residues are near or at the DNA binding site. The observation of two excited-state lifetimes of the protein indicates that there is heterogeneity in the microenvironments of these tryptophan residues. The "short-lifetime" tryptophan residues are more sensitive to the interaction with DNA than the "long-lifetime" residues. The results of solute-perturbation studies with iodide or acrylamide indicate that there are tryptophan residues near the surface of the protein which are heterogeneous in their accessibility to these quenchers and that they become less accessible after DNA binding. Also, lysine residues of the protein have been shown to be essential to DNA binding by chemical-modification studies. Tyrosine, arginine, and cysteine residues appear not to be involved in this binding process. From studies of the decay of fluorescence anisotropy of the binding protein in the presence and absence of DNA, it has been concluded that (a) the tetrameric binding protein does not dissociate into subuniits upon binding to the oligonucleotide d(pT)16 and (b) the binding protein-fd DNA complex possesses "local flexibility" and, therefore, cannot be described as a continuous, rigid rod.  相似文献   

8.
Extracts from lexC113 cells could not support phage G4 DNA-dependent replication unless supplemented with single-stranded DNA-binding protein. Purified lexC113 binding protein supported synthesis in a reconstituted replication assay, using purified proteins at 30 but not at 42 degrees C, indicating that the product of the lexC113 gene is an altered single-stranded DNA-binding protein.  相似文献   

9.
The organization and proper assembly of proteins to the primer-template junction during DNA replication is essential for accurate and processive DNA synthesis. DNA replication in RB69 (a T4-like bacteriophage) is similar to those of eukaryotes and archaea and has been a prototype for studies on DNA replication and assembly of the functional replisome. To examine protein-protein interactions at the DNA replication fork, we have established solution conditions for the formation of a discrete and homogeneous complex of RB69 DNA polymerase (gp43), primer-template DNA, and RB69 single-stranded DNA-binding protein (gp32) using equilibrium fluorescence and light scattering. We have characterized the interaction between DNA polymerase and single-stranded DNA-binding protein and measured a 60-fold increase in the overall affinity of RB69 single-stranded DNA-binding protein (SSB) for template strand DNA in the presence of DNA polymerase that is the result of specific protein-protein interactions. Our data further suggest that the cooperative binding of the RB69 DNA polymerase and SSB to the primer-template junction is a simple but functionally important means of regulatory assembly of replication proteins at the site of action. We have also shown that a functional domain of RB69 single-stranded DNA-binding protein suggested previously to be the site of RB69 DNA polymerase-SSB interactions is dispensable. The data from these studies have been used to model the RB69 DNA polymerase-SSB interaction at the primer-template junction.  相似文献   

10.
Interaction between DNA and an Escherichia coli protein omega   总被引:102,自引:0,他引:102  
An E. coli protein, designated ω, has been purified at least 1000-fold. Treatment of a eovalently closed DNA duplex containing negative superhelical turns with ω results in the loss of most of the superhelical turns. The loss of superhelical turns follows a gradual course rather than a one-hit mechanism. This reaction does not require a cofactor. No other change in the physical properties of the DNA could be detected. The DNA remains covalently closed. Its ultraviolet absorption spectrum, circular dichroism, buoyant density in CsCl, sedimentation properties in neutral media containing varying amounts of ethidium and in an alkaline medium, and its susceptibility toward Neurospora endonuclease, are not significantly different from an untreated DNA containing the same number of superhelical turns. Thus it appears that ω is capable of introducing a “swivel” reversibly into a DNA. A plausible mechanism is postulated.  相似文献   

11.
UV-induced mutagenesis was investigated in the uvrB strain and its isogenic counterpart overproducing the single-stranded DNA-binding protein (SSB). It was demonstrated that overproduction of SSB significantly increases the frequency of mutation. Our results indicate that such an increase might be due to certain abnormalities in induction of the SOS response (untimely and prolonged activation of the RecA protein).  相似文献   

12.
A series of Escherichia coli strains deficient in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42 degrees C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

13.
A series of Escherichia coli strains deficients in single-stranded DNA-binding protein (SSB) and DNA polymerase I was constructed in order to analyze the effects of these mutations on DNA repair resynthesis after UV-irradiation. Since SSB has been suggested to play a role in protecting single-stranded regions which may transiently exist during excision repair and since long single-stranded regions are believed to occur frequently as repair intermediates in strains deficient in DNA polymerase I, studies of repair resynthesis and strand rejoining were performed on strains containing both the ssb-1 and polA1 mutations. Repair resynthesis appears to be slightly decreased in the ssb-1 strain at 42°C relative to the wild-type; however, this effect is not enhanced in a polA1 derivative of this strain. After UV-irradiation, the single-strand molecular weight of the DNA of an ssb-1 strain decreases and fails to recover to normal size. These results are discussed in the context of long patch repair as an inducible component of repair resynthesis and of the protection of intermediates in the excision repair process by SSB. A direct role for SSB in repair resynthesis involving modulation of the proteins involved in this mode of DNA synthesis (particularly stimulation of DNA polymerase II) is not supported by our findings.  相似文献   

14.
15.
The ssb-1 gene encoding a mutant Escherichia coli single-stranded DNA-binding protein has been cloned into plasmid pACYC184. The amount of overproduction of the cloned ssb-1 gene is dependent upon its orientation in the plasmid. In the less efficient orientation, 25-fold more mutant protein is produced than in strains carrying only one (chromosomal) copy of the gene: the other orientation results in more than 60-fold overproduction of this protein. Analysis of the effects of overproduction of the ssb-1 encoded protein has shown that most of the deficiencies associated with the ssb-1 mutation when present in single gene copy, including temperature-sensitive conditional lethality and deficiencies in amplified synthesis of RecA protein and ultraviolet light-promoted induction of prophage λ+, are reversed by increased production of ssb-1 mutant protein. These results provide evidence in vivo that SSB protein plays an active role in recA-dependent processes. Homogenotization of a nearby genetic locus (uvrA) was identified in the cloning of the ssb-1 mutant gene. This observation has implications in the analysis of uvrA? mutant strains and will provide a means of transferring ssb? mutations from plasmids to the chromosome. On a broader scale, the observation may provide the basis of a general strategy to transfer mutations between plasmids and chromosomes.  相似文献   

16.
A single-stranded DNA-binding protein (SSB) affinity column was prepared by optimizing the coupling of Escherichia coli single-stranded DNA-binding protein to Affi-Gel 10. The bound SSB retained its ability to specifically bind single-stranded DNA. When nuclease-treated cell extracts were incubated with the SSB beads overnight at 4 degrees C, a major protein of Mr = 25,000 was bound. At shorter incubation times, two additional proteins of Mr = 32,000 and 36,000 were also detected. In the absence of nuclease treatment, eight additional proteins ranging from Mr = 14,000 to 160,000 also bound to the affinity column. The major Mr = 25,000 protein has been shown to be a folded chromosome-associated protein. Its binding to SSB is strongly enhanced by the addition of DNA polymerase III or DNA polymerase III holoenzyme.  相似文献   

17.
To determine whether cellular replication factors can influence the fidelity of DNA replication, the effect of HeLa cell single-stranded DNA-binding protein (SSB) on the accuracy of DNA replication by HeLa cell DNA polymerase alpha has been examined. An in vitro gap-filling assay, in which the single-stranded gap contains the supF target gene, was used to measure mutagenesis. Addition of SSB to the in vitro DNA synthesis reaction increased the accuracy of DNA polymerase alpha by 2- to 8-fold. Analysis of the products of DNA synthesis indicated that SSB reduces pausing by the polymerase at specific sites in the single-stranded supF template. Sequence analysis of the types of errors resulting from synthesis in the absence or presence of SSB reveals that, while the errors are primarily base substitutions under both conditions, SSB reduces the number of errors found at 3 hotspots in the supF gene. Thus, a cellular replication factor (SSB) can influence the fidelity of a mammalian DNA polymerase in vitro, suggesting that the high accuracy of cellular DNA replication may be determined in part by the interaction between replication factors, DNA polymerase and the DNA template in the replication complex.  相似文献   

18.
Human DNA polymerase kappa (pol kappa) has a sequence significantly homologous with that of Escherichia coli DNA polymerase IV (pol IV). We used a truncated form of human pol kappa (pol kappaDeltaC) and full-length pol IV to explore the miscoding properties of these enzymes. Oligodeoxynucleotides, modified site-specifically with N-(deoxyguanosin-8-yl)-2-acetylaminofluorene (dG-AAF) and N-(deoxyguanosin-8-yl)-2-aminofluorene (dG-AF), were used as DNA templates in primer extension reactions that included all four dNTPs. Reactions catalyzed by pol kappaDeltaC were partially blocked one base prior to dG-AAF or dG-AF, and also opposite both lesions. At higher enzyme concentrations, a significant fraction of primer was extended. Analysis of the fully extended reaction product revealed incorporation of dTMP opposite dG-AAF, accompanied by much smaller amounts of dCMP, dAMP, and dGMP and some one- and two-base deletions. The product terminating 3' to the adduct site contained AMP misincorporated opposite dC. On templates containing dG-AF, dAMP, dTMP, and dCMP were incorporated opposite the lesion in approximately equal amounts, together with some one-base and two-base deletions. Steady-state kinetics analysis confirmed the results obtained from primer extension reactions catalyzed by pol kappa. In contract, primer extension reactions catalyzed by pol IV were blocked effectively by dG-AAF and dG-AF. At high concentrations of pol IV, full-length products were formed containing primarily one- or two-base deletions with dCMP, the correct base, incorporated opposite dG-AF. The miscoding properties of pol kappa observed in this study are consistent with mutational spectra observed when plasmid vectors containing dG-AAF or dG-AF are introduced into simian kidney cells [Shibutani, S., et al. (2001) Biochemistry 40, 3717-3722], supporting a model in which pol kappa plays a role in translesion synthesis past acetylaminofluorene-derived lesions in mammalian cells.  相似文献   

19.
The role of the C terminus of Escherichia coli DNA helicase II (UvrD), a region outside the conserved helicase motifs, was investigated by using three mutants: UvrDDelta107C (deletion of the last 107 C-terminal amino acids), UvrDDelta102C, and UvrDDelta40C. This region, which lacks sequence similarity with other helicases, may function to tailor UvrD for its specific in vivo roles. Genetic complementation assays demonstrated that mutant proteins UvrDDelta107C and UvrDDelta102C failed to substitute for the wild-type protein in methyl-directed mismatch repair and nucleotide excision repair. UvrDDelta40C protein fully complemented the loss of helicase II in both repair pathways. UvrDDelta102C and UvrDDelta40C were purified to apparent homogeneity and characterized biochemically. UvrDDelta102C was unable to bind single-stranded DNA and exhibited a greatly reduced single-stranded DNA-stimulated ATPase activity in comparison to the wild-type protein (kcat = 0.01% of the wild-type level). UvrDDelta40C was slightly defective for DNA binding and was essentially indistinguishable from wild-type UvrD when single-stranded DNA-stimulated ATP hydrolysis and helicase activities were measured. These results suggest a role for a region near the C terminus of helicase II in binding to single-stranded DNA.  相似文献   

20.
The nucleation step of Escherichia coli RecA filament formation on single-stranded DNA (ssDNA) is strongly inhibited by prebound E. coli ssDNA-binding protein (SSB). The capacity of RecA protein to displace SSB is dramatically enhanced in RecA proteins with C-terminal deletions. The displacement of SSB by RecA protein is progressively improved when 6, 13, and 17 C-terminal amino acids are removed from the RecA protein relative to the full-length protein. The C-terminal deletion mutants also more readily displace yeast replication protein A than does the full-length protein. Thus, the RecA protein has an inherent and robust capacity to displace SSB from ssDNA. However, the displacement function is suppressed by the RecA C terminus, providing another example of a RecA activity with C-terminal modulation. RecADeltaC17 also has an enhanced capacity relative to wild-type RecA protein to bind ssDNA containing secondary structure. Added Mg(2+) enhances the ability of wild-type RecA and the RecA C-terminal deletion mutants to compete with SSB and replication protein A. The overall binding of RecADeltaC17 mutant protein to linear ssDNA is increased further by the mutation E38K, previously shown to enhance SSB displacement from ssDNA. The double mutant RecADeltaC17/E38K displaces SSB somewhat better than either individual mutant protein under some conditions and exhibits a higher steady-state level of binding to linear ssDNA under all conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号