首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M. H. Turnbull 《Oecologia》1991,87(1):110-117
Summary Seedlings of six subtropical rainforest tree species representing early (Omalanthus populifolius, Solanum aviculare), middle (Duboisia myoporoides, Euodia micrococca) and late (Acmena ingens, Argyrodendron actinophyllum) successional stages in forest development were grown in a glasshouse, under four levels of neutral shade (60%, 15%, 5%, 1% of photosynthetically active radiation (PAR) in incident sunlight) and three levels of selectively filtered shade (producing 15%, 5%, 1% of PAR). This design served to analyse the interactions between reduced photon flux density (PFD) and reduced red/far-red (R/FR) ratio in their effects on selected photosynthetic characteristics of each species. The light-saturated rate of photosynthesis was significantly influenced by growth irradiance in five of the six species, with all of these showing a non-linear decrease in maximum assimilation rate from 60% down to 1% PAR. The degree of acclimation to this range was not clearly related to the successional status of the species. Dark respiration was more sensitive to growth irradiance in the early- and mid-stage species than in the late-stage species. Although levels of dark respiration were clearly greater in leaves of early- and mid-stage species from the highest light levels, differences between successional groups were negligible at 1% PAR. Growth in filtered shade, typical of that beneath a closed canopy, resulted in lower photosynthetic capacities and quantum yields in those species which did respond. Although dark respiration rates were more sensitive to filtered shade in the early-stage than in the late-stage species, there was no evidence from other gas exchange characteristics to suggest that overall sensitivity to light quality (as characterised by the R/FR ratio) is greater in early successional-stage species.  相似文献   

2.
Understorey shade plants are seasonally exposed to dramatic changes in light conditions in deciduous forests related with the dynamics of the overstorey leaf phenology. These transitions are commonly followed by changes in herb plant communities, but shade-tolerant evergreen species must be able to adapt to changing light conditions. In this work we checked the photoprotective responses of evergreen species to acclimate to the shady summer environment and reversibly de-acclimate to a more illuminated environment after leaf fall on deciduous overstoreys. For that purpose we have followed the process of light acclimation in leaves of common box (Buxus sempervirens) during the winter to spring transition, which decrease irradiance in the understorey, and conversely during the transition from summer to autumn. Four parameters indicative of the structure and degree of acclimation of the photosynthetic apparatus have been studied: chlorophyll a/b ratio which is supposed to be inversely proportional to the antenna size, α/β-carotene which increases in shade acclimated leaves and the pools of α-tocopherol and xanthophyll cycle pigments (VAZ) which are two of the main photoprotection mechanisms in plants. Among these parameters, chlorophyll a/b ratio and VAZ pool responded finely to changes in irradiance indicating that modifications in the light harvesting size and photoprotective capacity contribute to the continuous acclimation and de-acclimation of long-lived evergreen leaves.  相似文献   

3.
The physiological response of leaves developed in low light (L) on Fagus crenata seedlings exposed to different levels of high light (H: high light, M: medium light) was studied. Measurements were conducted on potted seedlings in the F. crenata forest understory. The seedlings with leaves developed in L were transferred to H (L–H) and M (L–M) in summer. On exposure to high light, the photochemical efficiency of dark-adapted PSII (Fv/Fm) immediately decreased and was followed by a subsequent recovery in both L–H and L–M leaves. The mean value of Fv/Fm in L–H leaves was lower than that in L–M leaves through experiments, indicating that the degree of photoinhibition in L–H leaves was greater than that in L–M leaves. About 1 month after transfer, 37% and 5% of leaves had fallen in L–H and L–M seedlings, respectively. This result also indicated the greater photoinhibition in L–H leaves. Moreover, the photosynthetic capacity (PNmax) of L–H leaves decreased. In contrast, the PNmax of L–M leaves increased, although the PNmax was lower than that of M control leaves. An increase in the xanthophyll cycle pool (VAZ), indicating an increase of the photoprotective function, was found in both L–H and L–M leaves. Especially, the VAZ pool in L–M leaves was higher than that in M leaves by the end of experiments. L–M leaves may avoid photoinhibition effectively by the decrease in excess light with the increase of the PNmax or VAZ pool, compared to L–H leaves. Thus, the physiological acclimation on exposure to high light depended on the degree of high light. To achieve successful photosynthetic acclimation with slight photoinhibition, the variation of light intensity before and after exposure to high light would be an important factor because of the difference in excess light.  相似文献   

4.
This study evaluated the photosynthetic responses of Cucumis sativus leaves acclimated to illumination from three-band white fluorescent lamps with a high red:far-red (R:FR) ratio (R:FR = 10.5) and the photosynthetic responses of leaves acclimated to metal-halide lamps that provided a spectrum similar to that of natural light (R:FR = 1.2) at acclimation photosynthetic photon flux density (PPFD) of 100 to 700 μmol m?2 s?1. The maximum gross photosynthetic rate (P G) of the fluorescent-acclimated leaves was approximately 1.4 times that of the metal-halide-acclimated leaves at all acclimation PPFDs. The ratio of quantum efficiency of photosystem II (ΦPSII) of the fluorescent-acclimated leaves to that of the metal-halide-acclimated leaves tended to increase with increasing acclimation PPFD, whereas the corresponding ratios for the leaf mass per unit area tended to decrease with increasing acclimation PPFD. These results suggest that the greater maximum P G of the fluorescent-acclimated leaves resulted from an interaction between the acclimation light quality and quantity, which was mainly caused by the greater leaf biomass for photosynthesis per area at low acclimation PPFDs and by the higher ΦPSII as a result of changes in characteristics and distribution of chloroplasts, or a combination of these factors at high acclimation PPFDs.  相似文献   

5.
To characterize underwater photosynthetic performance in some terrestrial plants, we determined (i) underwater light acclimation (ii) underwater photosynthetic response to dissolved CO2, and (iii) underwater photosynthetic capacity during prolonged submergence in three species that differ in submergence tolerance: Phalaris arundinacea, Rumex crispus (both submergence-tolerant) and Arrhenatherum elatius (submergence-intolerant). None of the species had adjusted to low irradiance after 1 week of submergence. Under non-submerged (control) conditions, only R. crispus displayed shade acclimation. Submergence increased the apparent quantum yield in this species, presumably because of the enhanced CO2 affinity of the elongated leaves. In control plants of the grass species P. arundinacea and A. elatius, CO2 affinities were higher than for R. crispus. The underwater photosynthetic capacity of R. crispus increased during 1 month of submergence. In P. arundinacea photosynthesis remained constant during 1 month of submergence at normal irradiance; at low irradiance a reduction in photosynthetic capacity was observed after 2 weeks, although there was no tissue degeneration. In contrast, underwater photosynthesis of the submergence-intolerant species A. elatius collapsed rapidly under both irradiances, and this was accompanied by leaf decay. To describe photosynthesis versus irradiance curves, four models were evaluated. The hyperbolic tangent produced the best goodness-of-fit, whereas the rectangular hyperbola (Michaelis-Menten model) gave relatively poor results.  相似文献   

6.
Net photosynthetic rates and mesophyll conductances at 25 °C at light saturation and air levels of carbon dioxide and oxygen were measured on recently fully expanded leaflets of second trifoliolate leaves of soybeans (Glycine max cv. Kent). Plants were grown outdoors in pots at Beltsville, Maryland with 14 planting times from May through August, 1983. Air temperature and humidity, and photosynthetically active radiation (PAR) were measured for the expansion periods of the second trifoliolate leaves. Rates of net photosynthesis ranged from 24 to 33 mol m–2 s–1, and mesophyll conductances from 0.24 to 0.35 cm s–1 for the different planting dates. Mean 24-h air temperatures ranged from 20.6 to 29.0 °C, and mean daily PAR ranged from 29.4 to 58.4 mol m–2 d–1 for the leaf expansion periods. There was a positive relationship between photosynthetic characteristics and PAR during leaf expansion, and a negative relationship between photosynthetic characteristics and leaf expansion rates, with 96% of the variation in photosynthetic characteristics accounted for by these two variables. Leaf expansion rates were highly correlated with air temperature.  相似文献   

7.
Variations in leaf nitrogen concentration (Nm), mass-to-area ratio (Ma), amount of leaf nitrogen per unit leaf area (Na), and non-structural carbohydrates were measured in well-lit girdled branches of 11-year-old mango trees that were experiencing similar conditions of irradiance and gap fraction. The influence of source–sink relationships was studied by testing three levels of leaf-to-fruit ratio: 40, 70 and 150, during the period of linear fruit growth. Na was negatively correlated to the leaf-to-fruit ratio. Differences in Na were reflected in differences in net photosynthetic assimilation, Anet, although they could not fully account for them. All differences in Na resulted exclusively from differences in Nm, not Ma. Starch and total non-structural carbohydrates accumulated in the leaves as the result of higher leaf-to-fruit ratio, which suggests that the leaf carbohydrate status may play a role in photosynthetic acclimation to fruit load in mango. These observations complement previous findings where photosynthetic acclimation to light was found to be driven by changes in Ma, while Nm remained almost constant over a large range of gap fractions. Observations about the effect of fruit load were also in contrast with previous observations, since no evidence was found that leaf carbohydrate status played any role in photosynthetic acclimation to light. This study demonstrates that acclimation to changing source–sink relationships does not follow the same pattern as acclimation to progressive shading; but these observations do suggest that there may be different mechanisms by which leaves acclimatise to changing conditions.  相似文献   

8.
Oguchi R  Hikosaka K  Hiura T  Hirose T 《Oecologia》2008,155(4):665-675
Some shade leaves increase their photosynthetic capacity (P max) when exposed to a higher irradiance. The increase in P max is associated with an increase in chloroplast size or number. To accommodate those chloroplasts, plants need to make thick leaves in advance. We studied the cost and benefit of photosynthetic acclimation in mature leaves of a tree species, Kalopanax pictus Nakai, in a cool-temperate deciduous forest. Costs were evaluated as the additional investment in biomass required to make thick leaves, while the benefit was evaluated as an increase in photosynthetic carbon gain. We created gaps by felling canopy trees and examined the photosynthetic responses of mature leaves of the understorey seedlings. In the shade, leaves of K. pictus had vacant spaces that were not filled by chloroplasts in the mesophyll cells facing the intercellular space. When those leaves were exposed to higher irradiance after gap formation, the area of the mesophyll surface covered by chloroplasts increased by 17% and P max by 27%. This increase in P max led to an 11% increase in daily carbon gain, which was greater than the amount of biomass additionally invested to construct thicker leaves. We conclude that the capacity of a plant to acclimate to light (photosynthetic acclimation) would contribute to rapid growth in response to gap formation.  相似文献   

9.
We characterized the leaf anatomical characteristics and maximum assimilation rates of five neotropical Moraceae of different genera and successional positions. Plants were grown under different light levels and transferred to high light, simulating canopy openings. Total blade thickness increased with irradiance among all species, and thicker blades were developed when plants were switched. However, blade thickness, and the extent to which it was modified, was independent of the species’ successional position and did not predict photosynthetic performance. Palisade thickness was a good predictor of maximum photosynthetic rate, but only on a species-specific basis. Overall, leaf thickening with increasing irradiance was associated more with structural than with photosynthetic changes. The early successionals Cecropia obtusifolia and Ficus insipida exhibited similarly high photosynthetic plasticity and acclimation values, but differed in their leaf anatomical traits. The late successional Poulsenia armata produced the most anatomically plastic leaves, but failed to acclimate either anatomically or photosynthetically when transferred to higher light levels.  相似文献   

10.
This paper describes a study into the potential of plants to acclimate to light environments that fluctuate over time periods between 15 min and 3 h. Plants of Arabidopsis thaliana (L.) Heynh., Digitalis purpurea L. and Silene dioica (L.) Clairv. were grown at an irradiance 100 mol m-2 s-1. After 4–6 weeks, they were transferred to light regimes that fluctuated between 100 and either 475 or 810 mol m-2 s-1, in a regular cycle, for 7 days. Plants were shown, in most cases, to be able to undergo photosynthetic acclimation under such conditions, increasing maximum photosynthetic rate. The extent of acclimation varied between species. A more detailed study with S. dioica showed that this acclimation involved changes in both Rubisco protein and cytochrome f content, with only marginal changes in pigment content and composition. Acclimation to fluctuating light, at the protein level, did not fully reflect the acclimation to continuous high light - Rubisco protein increased more than would be expected from the mean irradiance, but less than expected from the high irradiance; cytochrome f increased when neither the mean nor the high irradiance would be expected to induce an increase.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

11.
Sailaja  M.V.  Das  V.S. Rama 《Photosynthetica》2000,38(2):267-273
Photosynthetic acclimation to reduced growth irradiances (650 and 200 µmol m–2 s–1) in Eleusine coracana (L.) Garten, a nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) C4 species and Gomphrena globosa L., a nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME) C4 species were investigated. E. coracana plants acclimated in 4 and 8 d to 650 and 200 µmol m–2 s–1, respectively, whereas G. globosa plants took 8 and 10 d, respectively, to acclimate to the same irradiances. The acclimation to reduced irradiance was achieved in both species by greater partitioning of chlorophyll towards the light-harvesting antennae at the expense of functional components. However, magnitude of increase in the light-harvesting antenna was higher in E. coracana as compared to G. globosa. Superior photosynthetic acclimation to reduced irradiance in G. globosa was due to the smaller change in functions of the cytochrome b 6/f complex, photosystem (PS) 1 and PS2 leading to the higher carbon fixation rates compared to E. coracana.  相似文献   

12.

Chl, chlorophyll
Chl a/b, ratio of chlorophyll a to chlorophyll b
Cyt f, cytochrome f
FR, far-red light
LFR, low irradiance, far-red enriched growth light
LHCII, light harvesting complex associated with PSII
LW, low irradiance, white growth light
MW, moderate irradiance, white growth light
PAR, photosynthetically active radiation
Pmax, light and CO2 saturated photosynthetic rate
PSI, photosystem I
PSII, photosystem II

Four plant species (Chamerion angustifolium, Digitalis purpurea, Brachypodium sylvaticum and Plantago lanceolata) which have previously been shown to demonstrate contrasting photosynthetic acclimatory responses to the light environment ( 33 , Plant, Cell and Environment 20, pp. 438–448) were analysed at a biochemical level. Plants were grown under low irradiance with a shade-type spectrum (LFR: 50μmol quanta m–2 s–1), moderately high white light (MW: 300μmol quanta m–2 s–1) and low irradiance white light (LW: 50μmol quanta m–2 s–1). The effects of light quality upon chlorophyll content and photosynthetic capacity were found to be species-dependent. A far-red dependent reduction in chlorophyll was found in three species, and an irradiance-dependent reduction was found in B. sylvaticum, which showed the greatest alteration in the xanthophyll cycle pool size of all species tested under these conditions. Chlorophyll a/b ratios were sensitive to both light quality and quantity in C. angustifolium and D. purpurea, being highest in MW, lowest in LFR, and intermediate in LW, whilst the other species showed no response. Ratios of photosystem II to photosystem I (PSII and PSI) demonstrated a strong irradiance-associated increase in all species except B. sylvaticum, whereas an increase in PSII/PSI in LFR compared to LW conditions was present in all species. A change in chlorophyll a/b was not always associated with a change in PSII/PSI, suggesting that the level of LHCII associated with each PSII varied in some species. Cytochrome f content showed an irradiance-dependent effect only, indicating a relationship with the capacity of electron transport. It is concluded that differing strategies of acclimation to the light environment demonstrated by these species results from differing strengths of expression of a series of independently regulated changes in the levels of photosynthetic components.  相似文献   

13.
The present study investigated the interaction of growth irradiance (Qint) with leaf capacity for and kinetics of adjustment of the pool size of xanthophyll cycle carotenoids (sum of violaxanthin, antheraxanthin and zeaxanthin; VAZ) and photosynthetic electron transport rate (Jmax) after changes in leaf light environment. Individual leaves of lower‐canopy/lower photosynthetic capacity species Tilia cordata Mill. and upper canopy/higher photosynthetic capacity species Populus tremula L. were either illuminated by additional light of 500–800 µmol m?2 s?1 for 12 h photoperiod or enclosed in shade bags. The extra irradiance increased the total amount of light intercepted by two‐fold for the upper and 10–15‐fold for the lower canopy leaves, whereas the shade bags transmitted 45% of incident irradiance. In control leaves, VAZ/area, VAZ/Chl and Jmax were positively associated with leaf growth irradiance (Qint). After 11 d extra illumination, VAZ/Chl increased in all cases due to a strong reduction in foliar chlorophyll, but VAZ/area increased in the upper canopy leaves of both species, and remained constant or decreased in the lower canopy leaves of T. cordata. The slope for VAZ/area changes with cumulative extra irradiance was positively associated with Qint only in T. cordata, but not in P. tremula. Nevertheless, all leaves of P. tremula increased VAZ/area more than the most responsive leaves of T. cordata. Shading reduced VAZ content only in P. tremula, but not in T. cordata, again demonstrating that P. tremula is a more responsive species. Compatible with the hypothesis of the role of VAZ in photoprotection, the rates of photosynthetic electron transport declined less in P. tremula than in T. cordata after the extra irradiance treatment. However, foliar chlorophyll contents of the exposed leaves declined significantly more in the upper canopy of P. tremula, which is not consistent with the suggestion that the leaves with the highest VAZ content are more resistant to photoinhibition. This study demonstrates that previous leaf light environment may significantly affect the adaptation capacity of foliage to altered light environment, and also that species differences in photosynthetic capacity and acclimation potentials importantly alter this interaction.  相似文献   

14.
Leaves deep in canopies can suddenly be exposed to increased irradiances following e.g. gap formation in forests or pruning in crops. Studies on the acclimation of photosynthesis to increased irradiance have mainly focused on the changes in photosynthetic capacity (Amax), although actual irradiance often remains below saturating level. We investigated the effect of changes in irradiance on the photosynthesis irradiance response and on nitrogen allocation in fully grown leaves of Cucumis sativus. Leaves that fully developed under low (50 µmol m?2 s?1) or moderate (200 µmol m?2 s?1) irradiance were subsequently exposed to, respectively, moderate (LM‐leaves) or low (ML‐leaves) irradiance or kept at constant irradiance level (LL‐ and MM‐leaves). Acclimation of photosynthesis occurred within 7 days with final Amax highest in MM‐leaves, lowest in LL‐leaves and intermediate in ML‐ and LM‐leaves, whereas full acclimation of thylakoid processes underlying photosystem II (PSII) efficiency and non‐photochemical quenching occurred in ML‐ and LM‐leaves. Dark respiration correlated with irradiance level, but not with Amax. Light‐limited quantum efficiency was similar in all leaves. The increase in photosynthesis at moderate irradiance in LM‐leaves was primarily driven by nitrogen import, and nitrogen remained allocated in a similar ratio to Rubisco and bioenergetics, while allocation to light harvesting relatively decreased. A contrary response of nitrogen was associated with the decrease in photosynthesis in ML‐leaves. Net assimilation of LM‐leaves under moderate irradiance remained lower than in MM‐leaves, revealing the importance of photosynthetic acclimation during the leaf developmental phase for crop productivity in scenarios with realistic, moderate fluctuations in irradiance that leaves can be exposed to.  相似文献   

15.
Functional and structural characteristics of the photosynthetic apparatus were studied in the diatom Stephanodiscus neoastraea and the cyanobacterium Planktothrix agardhii which were grown semi-continuously under constant irradiance or under simulated natural light fluctuations. The light fluctuations consisted of 24 oscillations of exponentially increasing and decreasing irradiance over a 12-h light period. Maximum irradiance was 1100 μmol photons m−2 s−1 with the ratio of maximum to minimum intensities being 100, simulating Langmuir circulations with a ratio of euphotic to mixing depth of 1. S. neoastraea acclimated to the light fluctuations by doubling the number and halving the size of photosynthetic units (PS II) while the amount of chlorophylls and carotenoids remained unchanged. The chlorophyll-specific maximum photosynthetic rate was enhanced while the slope of the photosynthesis versus irradiance curves was not influenced by the light fluctuations. Acclimation of P. agardhii was mainly characterized by an increase in chlorophyll content. Both photosystems showed only little changes in number and size. Maximum photosynthetic rate, saturating irradiance and initial slope of the photosynthesis versus irradiance curves did not vary. Although both high and low light were contained in the fluctuating light, an analogy to low or high light acclimation was not found for the diatom nor for the cyanobacterium acclimated to light fluctuations. We suggest that the acclimation to fluctuating light is a response type outside the known scheme of low and high light acclimation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Because light conditions in the forest understory are highly heterogeneous, photosynthetic acclimation to spatially variable irradiance within a crown is important for crown‐level carbon assimilation. The effect of variation in irradiance within the crown on leaf nitrogen content and photosynthetic rate was examined for pinnate compound leaves in saplings of Cedrela sinensis, a pioneer deciduous tree. Five shading treatments, in which 0, 25, 50, 75 and 100% of leaves were shaded, were established by artificial heavy shading using shade screen umbrellas with 25% transmittance. Although the nitrogen content of leaves was constant regardless of shading treatment, ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) content and light‐saturated photosynthetic capacity were lower in shade leaves within partially shaded crowns than within fully shaded crowns. Shade leaves within partially shaded crowns contained higher amount of amino acids. Most shade leaves died in partially shaded crowns, whereas more than half of shade leaves survived in totally shaded crowns. Assumptions on photosynthetic acclimation to local light conditions cannot explain why shade leaves have different photosynthetic capacities and survival rates in between partially and totally shaded crowns. Irradiance heterogeneity within the crown causes a distinct variation in photosynthetic activity between sun and shaded leaves within the crown.  相似文献   

17.
Twenty-two common British angiosperms were examined for their ability to acclimate photosynthetically to sun and shade conditions. Plants were grown under low irradiance, far-red enriched light (50 μmol m?2 s?1), selected to mimic as closely as possible natural canopy shade, and moderately high light of insufficient irradiance to induce photoinhibitory or photoprotective responses (300 μmol m?2 s?1). Light-and CO2-saturated photosynthetic rates of oxygen evolution (Pmax) and chlorophyll content were measured. Large variation was found in both parameters, and two ‘strategies’ for long-term acclimation were identified: firstly a change in chlorophyll per unit leaf area which was found to correlate positively with photosynthetic capacity, and secondly changes in chlorophyll alb ratio and Pmax, indicative of alterations at the chloroplast level, which were not associated with a change in chlorophyll content per unit leaf area. Combinations of these two strategies may occur, giving rise to the observed diversity in photosynthetic acclimation. The extent and nature of photosynthetic acclimation were compared with an index of shade association, calculated from the association each species has with woodland. It was found that the greatest flexibility for change at the chloroplast level was found in those species possessing an intermediate shade association, whilst acclimation in ‘sun’ species proceeded by a change in chlorophyll content; obligate shade species showed little capacity for acclimation at either the chloroplast or leaf level. A framework for explaining the variation between plant species in leaf-level photosynthetic capacity, in relation to the natural light environment, is presented. This is the first time the potential for light acclimation of photosynthesis in different plant species has been satisfactorily linked to habitat distribution.  相似文献   

18.
Summary To assess the role of photosynthetic acclimation in the response of tropical understory herbs to treefall light gaps, photosynthetic response curves were determined for three species of herbaceous bamboo growing in treatments of sun and shade at Barro Calorado Island, Panama. Increased maximum photosynthetic capacity did not always accompany higher ramet production in the sun treatment. Pharus latifolius reproduced abundantly in both treatments, and produced more ramets and developed higher maximum photosynthetic capacity under higher irradiance. Streptochaeta spicata also produced a high percentage of reproductive ramets in both treatments and produced more ramets in the sun, did not show any significant differences in photosynthetic parameters between treatments. Streptochaeta sodiroana did not change maximum photosynthetic capacity in the sun, and had higher photosynthetic efficiency and lower mortality in the shade. Stable carbon isotope composition of leaves indicated that all three species developed higher water-use efficiency under higher irradiance. Photosynthetic flexibility may contribute to the ability of P. latifolius to reproduce in treefall gaps, whereas S. spicata and S. sodiroana may maintain the ability to fix carbon efficiently in low irradiance even when growing or persisting in gaps.  相似文献   

19.
Deciduous and evergreen species are segregated on northeast and southwest slopes of the southern Appalachian Mountains. The segregated distributions of three ericaceous shrubs (Rhododendron maximum valley positions; Rhododendron periclymenoides on northeast slopes; Kalmia latifolia on southwest slopes) were compared to the respective irradiance environments. Growth patterns of field plants, and photosynthetic acclimation of each species to three irradiance treatments in a phytotron were studied. Rhododendron maximum, an evergreen species, was found to be most sensitive to high radiation. In phytotron experiments, quantum yield, light saturated photosynthetic capacity, photosynthesis per chlorophyll, and water use efficiency decreased at high ambient irradiance for R. maximum. These characteristics limit the growth of R. maximum on high irradiance southwestern slopes. Both K. latifolia and R. periclymenoides were able to improve their photosynthetic performance at high ambient irradiance. Rhododendron periclymenoides, a deciduous species, was found to continue increasing leaf conductance at high irradiance without an increase in photosynthesis indicating a possible limitation by water in high light environments such as southwest slopes. Kalmia latifolia, an evergreen species, had reduced photosynthetic capacity and reduced water use efficiency when grown in low irradiance conditions which coincides with the higher K. latifolia abundance on high light, southwestern slopes.  相似文献   

20.
The azimuth of vertical leaves of Silphium terebinthinaceum profoundly influenced total daily irradiance as well as the proportion of direct versus diffuse light incident on the adaxial and abaxial leaf surface. These differences caused structural and physiological adjustments in leaves that affected photosynthetic performance. Leaves with the adaxial surface facing East received equal daily integrated irradiance on each surface, and these leaves had similar photosynthetic rates when irradiated on either the adaxial or abaxial surface. The adaxial surface of East-facing leaves was also the only surface to receive more direct than diffuse irradiance and this was the only leaf side which had a clearly defined columnar palisade layer. A potential cost of constructing East-facing leaves with symmetrical photosynthetic capcity was a 25% higher specific leaf mass and increased leaf thickness in comparison to asymmetrical South-facing leaves. The adaxial surface of South-facing leaves received approximately three times more daily integrated irradiance than the abaxial surface. When measured at saturating CO2 and irradiance, these leaves had 42% higher photosynthetic rates when irradiated on the adaxial surface than when irradiated on the abaxial surface. However, there was no difference in photosynthesis for these leaves when irradiated on either surface when measurements were made at ambient CO2. Stomatal distribution (mean adaxial/abaxial stomatal density = 0.61) was unaffected by leaf orientation. Thus, the potential for high photosynthetic rates of adaxial palisade cells in South-facing leaves at ambient CO2 concentrations may have been constrained by stomatal limitations to gas exchange. The distribution of soluble protein and chlorophyll within leaves suggests that palisade and spongy mesophyll cells acclimated to their local light environment. The protein/chlorophyll ratio was high in the palisade layers and decreased in the spongy mesophyll cells, presumably corresponding to the attentuation of light as it penetrates leaves. Unlike some species, the chlorophyll a/b ratio and the degree of thylakoid stacking was uniform throughout the thickness of the leaf. It appears that sun-shade acclimation among cell layers of Silphium terebinthinaceum leaves is accomplished without adjustment to the chlorophyll a/b ratio or to thylakoid membrane structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号