首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
聚乙烯亚胺转基因影响因素的测定及其优化   总被引:6,自引:0,他引:6  
聚乙烯亚胺 (PEI)为阳离子多聚物 ,可浓缩DNA形成纳米级颗粒 ,作为基因释放载体转染真核细胞 .选用Mr2 5 0 0 0 ,分枝状的聚乙烯亚胺转染质粒 ,比较多种转基因效率的影响因素 .通过MTT法测定PEI对COS 7细胞的细胞毒性 .利用电泳阻滞实验测定PEI与DNA形成复合物时所需的比例 .通过PEI转染增强型绿色荧光蛋白的pEGFP质粒、编码β 半乳糖苷酶的pSVβ质粒 ,探索氯喹、白蛋白、血清、盐离子浓度、质粒剂量、细胞数量等对聚乙烯亚胺转基因效率的影响 .实验发现 ,PEI对细胞的毒性作用与剂量相关 .PEI DNA的N P比在 3 0以上方可完全结合DNA .溶酶体抑制剂氯喹可增加转染效率 .培养液中的白蛋白、血清会降低转染效率 .生理盐溶液作为配制PEI DNA复合物的溶媒 ,转染效率高于 5 %葡萄糖作为溶媒 .随着转染质粒剂量的增加 ,转染效率呈剂量依赖正效应 .聚乙烯亚胺是有效的体外真核细胞转染剂 ,可用于合成更复杂的基因释放载体 .  相似文献   

2.
Polyethylenimines (PEIs) and cationic liposomes are widely used for nonviral gene delivery. When PEIs have been used alone, the transfection efficiency has been higher for larger or linear than smaller or branched PEIs. We have reported previously that a combination of small PEIs and liposomes results in a potentiation of transfection efficiency in vitro. Here, the role of PEI size and structure in this synergism has been clarified further. Therefore, two structurally different high MW PEIs, i.e. the linear PEI22K and branched PEI25K, were studied in the SMC cells. We found that both linear PEI22K and branched PEI25K resulted in a similar synergism and comparable transfection efficiencies. However, the potentiation for larger PEIs found in the present study was weaker than that for smaller PEIs obtained in our previous studies. In conclusion, our present and previous results demonstrate that the increment of PEI/liposome-mediated gene transfection by different types of PEIs in vitro is a common attribute that is rather associated with their size than the structure. Interestingly, the effect of PEI size seems to be opposite when combined with liposome or given alone, i.e. the small PEIs are more effective when combined and less effective when alone than the larger ones.  相似文献   

3.
With the emerging role of hematopoietic stem cells as potential gene and cell therapy vehicles, there is an increasing need for safe and effective nonviral gene delivery systems. Here, we report that gene transfer and transfection efficiency in human hematopoietic and cord blood CD34+ cells can be enhanced by the use of low molecular weight polyethylenimine (PEI). PEIs of various molecular weights (800-750,000) were tested, and our results showed that the uptake of plasmid DNA by hematopoietic TF-1 cells depended on the molecular weights and the N/P ratios. Treatment with PEI 2K (m.w. 2000) at an N/P ratio of 80/1 was most effective, increasing the uptake of plasmid DNA in TF-1 cells by 23-fold relative to Lipofectamine 2000. PEI 2K-enhanced transfection was similarly observed in hematopoietic K562, murine Sca-1+, and human cord blood CD34+ cells. Notably, in human CD34+ cells, a model gene transferred with PEI 2K showed 21,043- and 513-fold higher mRNA expression levels relative to the same construct transfected without PEI or with PEI 25 K, respectively. Moreover, PEI 2K-treated TF-1 and human CD34+ cells retained good viability. Collectively, these results indicate that PEI 2K at the optimal N/P ratio might be used to safely enhance gene delivery and transfection of hematopoietic and human CD34+ stem cells.  相似文献   

4.
Novel cationic amphiphiles, based on hydrophobic cholesterol linked to L-lysinamide or L-ornithinamide, were designed and tested as nonviral gene transfer vectors. Each amide form of amino acid was conjugated to cholesterol by a carbamate ester bond to facilitate efficient degradation in animal cells. Cytotoxicity tests were performed for some cell lines. The transfection efficiency of the amphiphiles on different cell lines was evaluated as a liposomal solution in the presence of the fusogenic helper lipid, dioleoyl phosphatidylethanolamine (DOPE). The efficiency was also compared with other generally used gene carriers, such as lipofectin, 3 beta[N-(N'N'-dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol) liposome, and polyethylenimine (PEI).  相似文献   

5.
Poly(ethylene oxide) grafted with 1.8 kDa branched polyethylenimine (PEO-g-PEI) copolymers with varying compositions, that is, PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI, were prepared and investigated for in vitro nonviral gene transfer. Gel electrophoresis assays showed that PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI could completely inhibit DNA migration at an N/P ratio of 4/1, 4/1, and 3/1, respectively. Dynamic light scattering (DLS) and zeta potential measurements revealed that all three graft copolymers were able to effectively condense DNA into small-sized (80-245 nm) particles with moderate positive surface charges (+7.2 ~ +24.1 mV) at N/P ratios ranging from 5/1 to 40/1. The polyplex sizes and zeta-potentials intimately depended on PEO molecular weights and PEI graft densities. Notably, unlike 25 kDa PEI control, PEO-g-PEI polyplexes were stable against aggregation under physiological salt as well as 20% serum conditions due to the shielding effect of PEO. MTT assays in 293T cells demonstrated that PEO-g-PEI polyplexes had decreased cytotoxicity with increasing PEO molecular weights and decreasing PEI graft densities, wherein low cytotoxicities (cell viability >80%) were observed for polyplexes of PEO(13k)-g-22PEI, PEO(13k)-g-10PEI, and PEO(24k)-g-10PEI up to an N/P ratio of 20/1, 30/1, and 40/1, respectively. Interestingly, in vitro transfection results showed that PEO(13k)-g-10PEI polyplexes have the best transfection activity. For example, PEO(13k)-g-10PEI polyplexes formed at an N/P ratio of 20/1, which were essentially nontoxic (100% cell viability), displayed over 3- and 4-fold higher transfection efficiencies in 293T cells than 25 kDa PEI standard under serum-free and 10% serum conditions, respectively. Confocal laser scanning microscopy (CLSM) studies using Cy5-labeled DNA confirmed that these PEO-g-PEI copolymers could efficiently deliver DNA into the perinuclei region as well as into nuclei of 293T cells at an N/P ratio of 20/1 following 4 h transfection under 10% serum conditions. PEO-g-PEI polyplexes with superior colloidal stability, low cytotoxicity, and efficient transfection under serum conditions are highly promising for safe and efficient in vitro as well as in vivo gene transfection applications.  相似文献   

6.
Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationiccharge potential.High transfection efficiency of PEI,along with its cytotoxicity,strongly depends on itsmolecular weight.To enhance its gene delivery efficiency and minimize cytotoxicity,we have synthesizedsmall cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro.Inthis study,branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate[1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h.The efficiencies of thecross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein(EGFP) reporter gene were assessed in melanoma B 16F10 cell line and other cell lines.Flow cytometrywas used to quantify the cellular entry efficiency of plasmid and the transgene expression level.Thecytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay.EGDMA-PEI 800-4h,atypical cross-linked PEI reported here,mediated a more efficient expression of reporter gene than thecommercially available 25-kDa branched PEI control,and resulted in a 9-fold increase in gene deliveryin B16F10 cells and a 16-fold increase in 293T cells,while no cytotoxicity was found at the optimizedcondition for gene delivery.Furthermore,the transfection activity of polyplexes was preserved in thepresence of serum proteins.  相似文献   

7.
A novel nonviral gene transfer vector was developed by modifying nanostructured lipid carrier (NLC) with cetylated polyethylenimine (PEI). Polycation nanostructured lipid carrier (PNLC) was prepared using the emulsion-solvent evaporation method. Its in vitro gene transfer properties were evaluated in the human lung adenocarcinoma cell line SPC-A1 and Chinese Hamster Ovary (CHO) cells. Enhanced transfection efficiency of PNLC was observed after the addition of triolein to the PNLC formulation and the transfection efficiency of the optimized PNLC was comparable to that of Lipofectamine™2000. In the presence of 10% serum the transfection efficiency of the optimal PNLC was not significantly changed in either cell line, whereas that of Lipofectamine™2000 was greatly decreased in both. Thus, PNLC is an effective nonviral gene transfer vector and the gene delivery activity of PNLC was enhanced after triolein was included into the PNLC formulation.  相似文献   

8.
对新型阳离子聚合物PEI(10kD)-PBLG进行研究,重点考察其基因转染效率与细胞毒性,探讨其作为基因载体的可能性。通过粒径分析及扫描电镜(SEM)观察PEI(10kD)-PBLG与质粒pEGFP自组装形成的颗粒形态及粒径,预测其进入细胞的可能性。使用MTT比色法分析PEI(10kD)-PBLG、PEI(25kD)-PBLG、PEI(10kD)和PEI(25kD)的细胞毒性差异。选用表达增强型绿色荧光蛋白的质粒pEGFP作为报告基因模型,将其与PEI(10kD)-PBLG自组装后,分别转染真核细胞株Hela、COS-7、Vero-E6和ECV304,应用流式细胞术检测细胞转染效率,并比较了血清、缓冲液、细胞谱等多种因素对基因转染效率的影响。PEI(10kD)-PBLG可包裹质粒形成粒径100~120nm的纳米复合物,适合介导质粒进入细胞。该纳米粒复合物对转染缓冲液的敏感度较低,并能够在10%血清存在的条件下,转染全部实验用细胞株,尤其对Hela的转染效率最高,其次是COS-7、Vero-E6和ECV304;其中PEI-PBLG(10kD)/pEGFP复合物转染Hela细胞的比率为45.02%,高于PEI(10kD)/pEGFP的29.16%;PEI(10kD)-PBLG的细胞毒性作用显著低于PEI(25kD)、PEI(10kD)和PEI(25kD)-PBLG。新型阳离子多聚物PEI(10kD)-PBLG在提高PEI介导的基因转染效率的同时降低了其细胞毒性,提高了生物相容性,有望成为基因转移的有效载体。  相似文献   

9.

Background

Nuclear membrane is one of the main barriers in polymer mediated intracellular gene delivery. To improve the transgenic activity and safety of nonviral vector, triamcinolone acetonide (TA) as a nuclear localization signal was conjugated with different molecular weight polyethylenimine (PEI).

Methods

Different molecular weight PEI [600, 1800, 25 000 (25k)] was conjugated with TA to synthesize PEI‐TA by two‐step reaction. Their physicochemical characteristics, in vitro cytotoxicity and transfection efficiency were evaluated. To investigate the difference of transfection efficiency of various molecular weight PEI‐TA, their transfection mechanism was further investigated by confocal microscopy and competition assay. Transgenic expression in vivo was evaluated by injection into hepatic portal vein of mice.

Results

All PEI‐TA could form nanosize polyplexes with DNA and their physicochemical properties resemble each other. Their cytotoxicities were negligible compared to PEI 25k. The order of transfection efficiency was PEI 1800‐TA > PEI 600‐TA > PEI 25k‐TA. A transfection mechanism study displayed that TA could inhibit considerably the transgenic activity of PEI 1800‐TA and PEI 600‐TA, but that of PEI 25k‐TA was not inhibited. It was suggested that PEI 1800‐TA and PEI 600‐TA might translocate into the nucleus. Confocal microscopy investigation verified this suggestion. The data strongly suggested that the transfection efficiency of PEI 1800‐TA in vivo was much higher than that of PEI 25k, which was consistent with the results obtained in vitro.

Conclusions

Low molecular weight PEI‐TA could translocate into the nucleus efficiently. PEI 1800‐TA presented higher transgenic activity and it has a great potential for gene therapy as a nonviral carrier. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Wang Y  Zheng M  Meng F  Zhang J  Peng R  Zhong Z 《Biomacromolecules》2011,12(4):1032-1040
Twenty-five kDa polyethylenimine (PEI) is one of the most efficient nonviral gene transfer agents currently applied as a golden standard for in vitro transfection. In this study, novel 25 kDa PEI derivatives with reductively cleavable cystamine periphery (PEI-Cys) were designed to reduce carrier-associated cytotoxicity and to enhance further the transfection activity. The Michael-type conjugate addition of 25 kDa PEI with N-tert-butoxycarbonyl-N'-acryloyl-cystamine (Ac-Cys-(t)Boc) and N-tert-butoxycarbonyl-N'-methacryloyl-cystamine (MAc-Cys-(t)Boc) followed by deprotection readily afforded PEI-Cys derivatives, denoted as PEI-(Cys)x(Ac) and PEI-(Cys)x(MAc), with degree of substitution (DS) ranging from 14 to 34 and 13 to 38, respectively. All PEI-Cys derivatives had higher buffer capacity than the parent 25 kDa PEI (21.2 to 23.1% versus 15.1%). Gel retardation and ethidium bromide exclusion assays showed that cystamine modification resulted in largely enhanced interactions with DNA. PEI-(Cys)x(Ac) could condense DNA into small-sized particles of 80-90 nm at and above an N/P ratio of 5/1, which were smaller than polyplexes of 25 kDa PEI (100-130 nm). In comparison, PEI-(Cys)x(MAc) condensed DNA into somewhat larger particles (100-180 nm at N/P ratios from 30/1 to 5/1). Gel retardation and dynamic light scattering (DLS) measurements showed that PEI-Cys polyplexes were quickly unpacked to release DNA in response to 10 mM dithiothreitol (DTT). These PEI-Cys derivatives revealed markedly decreased cytotoxicity as compared with 25 kDa PEI with IC(50) values of >100 mg/L and 50-75 mg/L for HeLa and 293T cells, respectively (corresponding IC(50) data of 25 kDa PEI are ca. 11 and 3 mg/L). The in vitro transfection experiments in HeLa and 293T cells using pGL3 as a reporter gene showed that gene transfection activity of PEI-Cys derivatives decreased with increasing DS and PEI-(Cys)x(MAc) exhibited higher transfection activity than PEI-(Cys)x(Ac) at similar DS. Notably, polyplexes of PEI-(Cys)14(Ac) and PEI-(Cys)13(MAc) showed significantly enhanced gene transfection efficiency (up to 4.1-fold) as compared with 25 kDa PEI formulation at an N/P ratio of 10/1 in both serum-free and 10% serum-containing conditions. The modification of PEI with reductively cleavable periphery appears to be a potential approach to develop safer and more efficient nonviral gene vectors.  相似文献   

11.
A new polyethylenimine (PEI)-derived biodegradable polymer was synthesized as a nonviral gene carrier. Branches of PEI were ketalized, and capabilities of nucleic acid condensation and delivery efficiency of the modified polymers were compared with ones of unketalized PEI. Ketalized PEI was able to efficiently compact both plasmid DNA and siRNA into nucleic acids/ketalized PEI polyplexes with a range of 80-200 nm in diameter. Nucleic acids were efficiently dissociated from the polyplexes made of ketalized PEI upon hydrolysis. In vitro study also demonstrated that ketalization enhanced transfection efficiency of the polyplexes while reducing cytotoxicity, even at high N/ P ratios. Interestingly, transfection efficiency was found to be inversely proportional to molecular weights of ketalized PEI, while RNA interference was observed in the opposite way. This study implies that selective delivery of plasmid DNA and siRNA to the nucleus and the cytoplasm can be achieved by tailoring the structures of polymeric gene carriers.  相似文献   

12.
Lu B  Xu XD  Zhang XZ  Cheng SX  Zhuo RX 《Biomacromolecules》2008,9(10):2594-2600
To develop chitosan-based efficient gene vectors, chitosans with different molecular weights were chemically modified with low molecular weight polyethylenimine. The molecular weight and composition of polyethylenimine grafted N-maleated chitosan (NMC-g-PEI) copolymers were characterized using gel permeation chromatography (GPC) and (1)H NMR, respectively. Agarose gel electrophoresis assay showed that NMC-g-PEI had good binding ability with DNA, and the particle size of the NMC-g-PEI/DNA complexes was 200-400 nm, as determined by a Zeta sizer. The nanosized complexes observed by scanning electron microscopy (SEM) exhibited a compact and spherical morphology. The NMC-g-PEI copolymers showed low cytotoxicity and good transfection activity, comparable to PEI (25 KDa) in both 293T and HeLa cell lines, except for NMC 50K-g-PEI. The results indicated that the molecular weight of NMC-g-PEI has an important effect on cytotoxicity and transfection activity, and low molecular weight NMC-g-PEI has a good potential as efficient nonviral gene vectors.  相似文献   

13.
用低分子量的聚乙亚胺(PEI)开发一种新的非病毒基因转染系统,为基因在皮肤组织中的有效转染提供一种可靠、廉价的方法。将带有绿色荧光蛋白报告基因(gfp)的真核表达质粒与阳离子聚合物聚乙亚胺结合,用肝癌细胞株CM7721试验,研究其转染效率及可能引起的细胞毒性;进一步转染小鼠皮肤组织,研究转染基因的表达位置及持续表达时间。结果发现,低分子量PEI介导的细胞转染效率最高可达55%,转染效率与PEI结构无关(P>0·05),但是随着PEI分子量的增加,其转染活性略有下降。同时,随着分子量的增加,PEI对细胞的毒性也相应加大;小鼠皮肤转染实验显示,转染24h后,gfp即可在皮肤组织的毛囊、汗腺、皮脂腺等处高效表达,表达可持续7~9d;进一步对皮肤用氮酮、维甲酸处理后,gfp可在皮肤组织的颗粒层细胞中高效表达。PEI是一种高效、有用的非病毒基因转染载体,能够在体外培养的动物细胞及动物皮肤组织中进行基因转移,这对皮肤疾病的基因治疗具有潜在的应用价值。  相似文献   

14.
Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human umbilical vein endothelial cells (HUVEC), and by passage 4, 10.7% of HUVEC were transfected compared to 0.84% with DNA. Lack of expression with PEI 25 kDa/mRNA or PLL 54 kDa/mRNA in a cell-free translation assay and following cytoplasmic injection into Rat1 cells indicated that these polyplexes were too stable to release mRNA. In contrast, polyplexes formed using smaller PEI 2 kDa and PLL 3.4 kDa gave 5-fold greater expression in B16-F10 cells compared to DOTAP, but were dependent on chloroquine for transfection activity. Endosomolytic activity was incorporated by conjugating PEI 2 kDa to melittin and resulting PEI 2 kDa-melittin/mRNA polyplexes mediated high transfection levels in HeLa cells (31.1 +/- 4.1%) and HUVEC (58.5 +/- 2.9%) in the absence of chloroquine, that was potentiated to 52.2 +/- 2.7 and 71.6 +/- 1.7%, respectively, in the presence of chloroquine. These results demonstrate that mRNA polyplexes based on peptide-modified low molecular weight polycations can possess versatile properties including endosomolysis that should enable efficient non-viral mRNA transfection of quiescent and post-mitotic cells.  相似文献   

15.
The use of in vitro cell culture systems to assess gene function largely depends on the successful transfer of DNA into target cells. Well developed in mammals, transfection methods are still to be optimized for non-mammalian cell culture systems, like fish. Here we describe a rapid, cost-efficient, and successful method to transfer DNA into a fish bone-derived cell line using polyethylenimine (PEI) as the DNA carrier. Using this method, DNA transfer was remarkably enhanced in comparison with commercially available reagents, as demonstrated by the increased activity of both luciferase and green fluorescent protein observed in the transfected cells. Its efficiency in transferring DNA intoa wide range of cell types, including non-mammalian and hard-to-transfect cells, in addition to a low cost, show that PEI is a reagent of choice for nonviral vector transfection.  相似文献   

16.
17.
The development of efficient transfection protocols for livestock cells is crucial for implementation of cell-based transgenic methods to produce genetically modified animals. We synthetized fully deacylated linear 22, 87 and 217 kDa polyethylenimine (PEI) nanoparticles and compared their transfection efficiency and cytotoxicity to commercial branched 25 kDa PEI and linear 58 kDa poly(allylamine) hydrochloride. We studied the effect of PEI size and presence of serum on transfection efficiency on primary cultures of bovine fetal fibroblasts and established cells lines (HEK 293 and Hep G2). We found that transfection efficiency was affected mainly by polymer/pDNA ratio and DNA concentration and in less extent by PEI MW. In bovine fibroblast, preincubation of PEI nanoparticles with fetal bovine serum (FBS) greatly increased percentage of cells expressing the transgene (up to 82%) while significantly decreased the polymer cytotoxic effect. 87 and 217 kDa PEI rendered the highest transfection rates in HEK 293 and Hep G2 cell lines (>50% transfected cells) with minimal cell toxicity. In conclusion, our results indicate that fully deacylated PEI of 87 and 217 kDa are useful DNA vehicles for non-viral transfection of primary cultures of bovine fetal fibroblast and HEK 293 and Hep G2 cell lines.  相似文献   

18.
The study aims to use cholesterol (Chol) + DOTAP liposome (CD liposome) based human vascular endothelial growth factor-165 (VEGF(165)) gene transfer into skeletal myoblasts (SkMs) for treatment of acute hind limb ischaemia in a rabbit model. The feasibility and efficacy of CD liposome mediated gene transfer with rabbit SkMs were characterized using plasmid carrying enhanced green fluorescent protein (pEGFP) and assessed by flow cytometry. After optimization, SkMs were transfected with CD lipoplexes carrying plasmid-VEGF(165) (CD-pVEGF(165)) and transplanted into rabbit ischaemic limb. Animals were randomized to receive intramuscular injection of Medium199 (M199; group 1), non-transfected SkM (group 2) or CD-pVEGF(165) transfected SkM (group 3). Flow cytometry revealed that up to 16% rabbit SkMs were successfully transfected with pEGFP. Based on the optimized transfection condition, transfected rabbit SkM expressed VEGF(165) up to day 18 with peak at day 2. SkMs were observed in all cell-transplanted groups, as visualized with 6-diamidino-2-phenylindole and bromodeoxyuridine. Angiographic blood vessel score revealed increased collateral vessel development in group 3 (39.7 +/- 2.0) compared with group 2 (21.6 +/- 1.1%, P < 0.001) and group 1 (16.9 +/- 1.1%, P < 0.001). Immunostaining for CD31 showed significantly increased capillary density in group 3 (14.88 +/- 0.9) compared with group 2 (8.5 +/- 0.49, P < 0.001) and group 1 (5.69 +/- 0.3, P < 0.001). Improved blood flow (ml/min./g) was achieved in animal group 3 (0.173 +/- 0.04) as compared with animal group 2 (0.122 +/- 0.016; P= 0.047) and group 1 (0.062 +/- 0.012; P < 0.001). In conclusion, CD liposome mediated VEGF(165) gene transfer with SkMs effectively induced neovascularization in the ischaemic hind limb and may serve as a safe and new therapeutic modality for the repair of acute ischaemic limb disease.  相似文献   

19.
Background:One of the major challenges in gene therapy is producing gene carriers that possess high transfection efficiency and low cytotoxicity (1). To achieve this purpose, crystal nanocellulose (CNC) -based nanoparticles grafted with polyethylenimine (PEI) have been developed as an alternative to traditional viral vectors to eliminate potential toxicity and immunogenicity.Methods:In this study, CNC-PEI10kDa (CNCP) nanoparticles were synthetized and their transfection efficiency was evaluated and compared with linear cationic PEI10kDa (PEI) polymer in HEK293T (HEK) cells. Synthetized nanoparticles were characterized with AFM, FTIR, DLS, and gel retardation assays. In-vitro gene delivery efficiency by nano-complexes and their effects on cell viability were determined with fluorescent microscopy and flow cytometry.Results:Prepared CNC was oxidized with sodium periodate and its surface cationized with linear PEI. The new CNCP nano-complex showed different transfection efficiencies at different nanoparticle/plasmid ratios, which were greater than those of PEI polymer. CNPC and Lipofectamine were similar in their transfection efficiencies and effect on cell viability after transfection.Conclusion:CNCP nanoparticles are appropriate candidates for gene delivery. This result highlights CNC as an attractive biomaterial and demonstrates how its different cationized forms may be applied in designing gene delivery systems.Key Words: Crystal Nanocellulose, Gene transfection, Nanoparticle, Nano-complex  相似文献   

20.
To develop a novel nonviral gene carrier, three types of polyamine-dialkyl phosphates conjugates were synthesized via an unprecedented synthetic intermediate, dimerized dicetyl phosphate (DCP) anhydride, and the transfection efficiency and the complexation properties of the conjugate-DNA were evaluated. Condensation of DCP by 1,3,5-triisopropylbenzenesulfonyl chloride, TPSCl, gives the dimerized anhydride, which is stable enough to isolate by column chromatography in approximately 90% yield. The anhydride is reactive with various amines, i.e., spermidine, spermine, and polyethylenimine (PEI(1800)), providing corresponding polyamine-DCP conjugates via phosphoramidate linkage. The polyamine-DCP conjugates exhibited moderate transfection efficacy evaluated by beta-galactosidase assay. The conjugate-DNA complex was observed by using an atomic force microscope (AFM), revealing that the PEI(1800)-DCP conjugate, which showed the most efficient transfection, enables the formation of the more compact complex with DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号