首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Allozyme analysis was carried out on 152 Trichinella isolates from synanthropic and wild animals and from humans; the isolates were collected from 5 continents. The analysis, involving 27 enzymes, revealed the presence of 8 distinct gene pools, termed T1-T8. Four of the genetic groups represent the 4 previously proposed species: Trichinella spiralis sensu stricto (T1), Trichinella nativa (T2), Trichinella nelsoni (T7), and Trichinella pseudospiralis (T4). The other 4, T3, T5, T6, and T8 are distinct from previously described species. The absence of allozymic hybrid patterns among even sympatric groups indicates a lack of gene flow among the groups. Principal component analysis and the unweighted pair group method of analysis were used to assemble allozyme patterns of the 152 isolates into discrete groups and to show their relative relationships. Both analyses indicated the presence of 8 primary clusters that correlated with the gene pools revealed by direct allozyme profile analysis. The absence of evidence of gene flow among the gene pools and the high level of allozymic differentiation between the cluster groups support the concept that the genus Trichinella is composed of several sibling species.  相似文献   

2.
The present study was designed to investigate the tolerance to low temperatures of 9 Trichinella isolates in rat muscle tissue. Nine groups of 24 rats were infected with encapsulated Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella murrelli, Trichinella T6, Trichinella nelsoni, and 3 nonencapsulated Trichinella pseudospiralis strains. Six rats from each of the groups were necropsied at 5, 10, 20, and 40 wk postinfection (wpi). Muscle tissues containing Trichinella larvae were exposed to temperatures of -18, -5, and 5 C for 1 or 4 wk, and afterward the reproductive capacity index (RCI) in mice was determined for the 9 individual Trichinella isolates. Only T. nativa muscle larvae were infective after freezing at a temperature of -18 C. At 5 wpi all encapsulated isolates, except for the tropical species T. nelsoni, remained infective after exposure to a temperature of -5 C for both 1 and 4 wk, whereas nonencapsulated T. pseudospiralis survived only 1 wk of exposure. All Trichinella spp. remained infective after exposure to a temperature of 5 C. Muscle larvae for all investigated species remained infective as long as they persisted in live rats during the experiment. Analysis of variance showed a significant effect of age on the temperature tolerance of encapsulated T. spiralis and nonencapsulated T. pseudospiralis. In addition, significant interaction between age of muscle larvae and length of exposure was found. In general Trichinella muscle larvae of medium age (10 and 20 wpi) tolerated freezing better than early and late stages of infection (5 and 40 wpi). This is the first study to demonstrate such a relationship between age of infection and temperature tolerance of Trichinella spp. muscle larvae.  相似文献   

3.
Ribo HRM, a single-tube PCR and high resolution melting (HRM) assay for detection of polymorphisms in the large subunit ribosomal DNA expansion segment V, was developed on a Trichinella model. Four Trichinella species: T. spiralis (isolates ISS3 and ISS160), T. nativa (isolates ISS10 and ISS70), T. britovi (isolates ISS2 and ISS392) and T. pseudospiralis (isolates ISS13 and ISS1348) were genotyped. Cloned allelic variants of the expansion segment V were used as standards to prepare reference HRM curves characteristic for single sequences and mixtures of several cloned sequences imitating allelic composition detected in Trichinella isolates. Using the primer pair Tsr1 and Trich1bi, it was possible to amplify a fragment of the ESV and detect PCR products obtained from the genomic DNA of pools of larvae belonging to the four investigated species: T. pseudospiralis, T. spiralis, T. britovi and T. nativa, in a single tube Real-Time PCR reaction. Differences in the shape of the HRM curves of Trichinella isolates suggested the presence of differences between examined isolates of T. nativa, T. britovi and T. pseudospiralis species. No differences were observed between T. spiralis isolates. The presence of polymorphisms within the amplified ESV sequence fragment of T. nativa T. britovi and T. pseudospiralis was confirmed by sequencing of the cloned PCR products. Novel sequences were discovered and deposited in GenBank (GenBank IDs: JN971020-JN971027, JN120902.1, JN120903.1, JN120904.1, JN120906.1, JN120905.1). Screening the ESV region of Trichinella for polymorphism is possible using the genotyping assay Ribo HRM at the current state of its development. The Ribo HRM assay could be useful in phylogenetic studies of the Trichinella genus.  相似文献   

4.
Thirty-six wild boars were inoculated with Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella pseudospiralis (USSR), T. pseudospiralis (USA), T. pseudospiralis (AUST), Trichinella murrelli, Trichinella T6, and Trichinella nelsoni. The wild boars were killed at 5 and 10 wk postinoculation (PI), and the number of muscle larvae per g (lpg) of tissue was determined for 18 muscles or muscle groups. Five weeks PI, all Trichinella genotypes had established as muscle larvae, but their infectivity varied widely: T. spiralis established in high numbers (mean = 296 lpg), T. britovi, T. nelsoni, and 1 of the T. pseudospiralis genotypes (AUST) in moderate numbers (mean = 53-74 lpg), whereas the remaining genotypes were poorly infective (mean 2-16 lpg). Because of considerable weight gain of the wild boars, an estimated total larval burden (live weight x lpg) was calculated for each animal. The total larval burden did not change significantly over time for T. spiralis, T. murrelli, T. britovi, T. nelsoni, and T. pseudospiralis (USA and USSR), whereas a significant reduction could be demonstrated for T. nativa, Trichinella T6, and T. pseudospiralis (AUST). Diaphragm and tongue were predilection sites in wild boars, independent of Trichinella genotype and infection level. At low infection levels, a greater percentage of larvae were found in diaphragm and tongue at 10 wk than 5 wk PI. Antibody responses increased rapidly between weeks 3 and 5 PI. For T. spiralis and T. nelsoni, the high antibody level persisted throughout the experimental period, but for T. nativa, T. britovi, T. murrelli, or Trichinella T6, the levels declined. For T. pseudospiralis, the antibody response increased more gradually between weeks 3 to 10 PI. Infection with all genotypes of Trichinella were detected using any of 7 excretory-secretory antigens, which points to the potential use of 1 common antigen for epidemiological studies on Trichinella in wild boars. In conclusion, T. spiralis is highly infective to wild boars, T. britovi, T. nelsoni, T. pseudospiralis (USA), and T. pseudospiralis (USSR) are moderately infective, and T. nativa, T. murrelli, T. pseudospiralis (AUST), and Trichinella T6 are poorly adapted to this host species.  相似文献   

5.
Tissues and serum from 59 raccoons (Procyon lotor), 42 coyotes (Canis latrans), and seven Striped Skunks (Mephitis mephitis) collected in Dane and Iowa Counties, Wisconsin, USA, between October 2005 and March 2006 were microscopically and serologically examined for the presence of Trichinella spp. Encapsulated larvae were found on compression slides prepared from tongue tissues from a few animals. Complete tissue digestion of tongues revealed that 19% of the raccoons, 26% of the coyotes, and none of the seven skunks tested were infected with Trichinella spp. Cats were subsequently experimentally infected by feeding them the raccoon tissues containing muscle larvae, and muscle larvae isolated from the collected tongues were experimentally transmitted to mice. Multiplex polymerase chain reaction analysis of the isolated muscle larvae demonstrated two distinct bands migrating at 127 base pairs (bp) and 316 bp in all samples, which together are diagnostic for Trichinella murrelli; the isolates were assigned Istituto Superiore di Sanita (ISS) codes ISS1656 through ISS1667, and ISS1708 through ISS1710 by the International Trichinella Reference Centre. These findings extend the geographic range of T. murrelli into Wisconsin, USA.  相似文献   

6.
Four different isolates of Trichinella spp. (Z1, Z2, Z3, and Z4) obtained from the skeletal muscle of street dogs in the state of Zacatecas, Mexico were serial passaged in Wistar rats; infective larvae from the skeletal muscle of the rats were collected and frozen in liquid nitrogen. After centrifugation, DNA was extracted and the 5SRNAr and IsRNAr genes were amplified. The isolates were identified by the size of the amplified products from the 5SRNAr and IsRNAr genes (750 and 290 bp, respectively). The amplicons obtained by PCR were sequenced, aligned, and compared to the reference strain Trichinella spiralis MSUS/MEX/91//EM isolated from pigs. Based on our results, we determined that the Trichinella isolates from canine (Z1-Z4) belonged to the T. spiralis species and had 83% identity with the reference strain. The phylogenetic tree constructed from the sequences showed differences between the isolates from pig and dog. These genetic differences may be related to the immune response of the host or the pathogenicity of the isolates. Therefore, these findings have important epidemiological and public health implications.  相似文献   

7.
Biological variation in Trichinella species and genotypes   总被引:1,自引:0,他引:1  
At present, the genus Trichinella comprises seven species of which five have encapsulated muscle larvae (T. spiralis, T. nativa, T. britovi, T. nelsoni and T. murrelli) and two do not (T. pseudospiralis and T. papuae) plus three genotypes of non-specific status (T6, T8 and T9). The diagnostic characteristics of these species are based on biological, biochemical and genetic criteria. Of biological significance is variation observed among species and isolates in parameters such as infectivity and immunogenicity. Infectivity of Trichinella species or isolates is determined, among other considerations, by the immune status of the host in response to species- or isolate-specific antigens. Common and particular antigens determine the extent of protective responses against homologous or heterologous challenge. The kinetics of isotype, cytokine and inflammatory responses against T. spiralis infections are isolate-dependent. Trichinella spiralis and T. pseudospiralis induce different dose-dependent T-cell polarizations in the early host response, with T. spiralis initially preferentially promoting Th1-type responses before switching to Th2 and T. pseudospiralis driving Th2-type responses from the outset.  相似文献   

8.
Groups of pigs were inoculated with genotypes of Trichinella belonging to: Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella pseudospiralis (from Caucasus), T. pseudospiralis (from USA), Trichinella murrelli, Trichinella sp. (from North America), and Trichinella nelsoni. The pigs were sacrificed between 5 and 40weeks p.i., and the number of muscle larvae per gram (l.p.g.) of tissue was determined as an average of 18 muscles. All Trichinella genotypes were infective for pigs, but both their infectivity and persistence varied: 5weeks p.i., T. spiralis muscle larvae were present in high numbers (mean=427l.p.g.), while T. britovi, T. nelsoni, and T. pseudospiralis larvae were present in moderate numbers (means=24-52l.p.g.); larvae of the remaining genotypes were recovered only in low numbers (means=0.05-5. 00l.p.g.). The total larval burden (live weight of pigxl.p.g.) was constant over time for T. spiralis, T. britovi, and T. nelsoni, but declined significantly (P<0.05) for the other genotypes. Antibody responses could be detected 3-4weeks p.i. by seven different Trichinella ES antigens, but the antibody levels and dynamics differed significantly among the experimental groups. In pigs inoculated with T. spiralis, T. britovi, or T. nelsoni, the antibody level increased rapidly between weeks 3 and 5 p.i. and was stable or increased slightly throughout the experimental period. In pigs inoculated with T. nativa, T. murrelli, or Trichinella (T6) (from North America), a rapid increase was detected between weeks 3 and 5 p.i., but for these genotypes a reduction in the antibody levels was seen thereafter. In the pigs inoculated with T. pseudospiralis, the antibody level increased more gradually over a period from week 3 p. i. to weeks 15-20 p.i., and decreased thereafter. In general, all species of Trichinella were detected by any of the seven ES antigens, which points to the potential use of one common antigen for surveillance and epidemiological studies on both domestic and sylvatic Trichinella in pigs. Homologous ES antigens were slightly more sensitive in detecting antibodies to the corresponding Trichinella species.  相似文献   

9.
Muscle larvae of Trichinella isolates from two outbreaks in Korea were analyzed by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiple-PCR. All of the muscle larvae showed a band similar to that of T. spiralis larvae of the reference strain. The two Korean Trichinella isolates (isolate code ISS623 and ISS1078) might be classifiable to Trichinella spiralis.  相似文献   

10.
Kuratli, S., Lindh, J. G., Gottstein, B., Smith, D. F., and Connolly, B. 1999. Trichinella spp.: Differential expression of two genes in the muscle larva of encapsulating and nonencapsulating species. Experimental Parasitology 93, 153-159. The expression of the two genes tsmyd-1 and tsJ5 was studied in the muscle stage larva of three different species of Trichinella. T. spiralis and T. britovi are both encapsulating species, while T. pseudospiralis is a nonencapsulating species. Expression of tsJ5 is developmentally regulated in T. spiralis and has been shown in this study to be down-regulated in the T. pseudospiralis muscle larva compared with the other two species. Immunoblot analysis has also revealed that the relative abundance of the protein product of this gene, TSJ5, is lower in T. pseudospiralis muscle larvae. It has previously been shown that expression of tsmyd-1 is not developmentally regulated in T. spiralis (Connolly et al. 1996). In contrast, expression of this gene is slightly increased in the muscle larvae of T. pseudospiralis. Southern analysis of genomic DNA from the three Trichinella species shows that both genes are highly conserved.  相似文献   

11.
Trichinella T5, collected from sylvatic carnivores in North America, was identified previously as a different phenotype of Trichinella, with an uncertain taxonomic level due to the availability of only 2 isolates. Cross-breeding experiments carried out with single female and male larvae of 2 strains of Trichinella T5, with single female and male larvae of 2 strains of Trichinella spiralis, Trichinella nativa, Trichinella britovi, Trichinella pseudospiralis, Trichinella nelsoni, and Trichinella T6, showed a reproductive isolation of Trichinella T5. Viable offspring were obtained only when a female of Trichinella T5 was crossed with a male of T. britovi, but not vice versa. Furthermore, the analysis of biological, biochemical, and molecular data of 32 isolates collected from sylvatic animals in the Nearctic region and identified as Trichinella T5 permitted its reassessment at the species level. Trichinella murrelli n. sp. is characterized by the following: distribution in temperate areas of the Nearctic region; newborn larvae production in vitro of 29-36/72 hr; nurse cell development time between 24 and 70 days postinfection; reproductive capacity index in Swiss mice 1.2-9.5, in wild mice 29.5-159.8, in rats 0.7-2.4, and in pigs 0.03-0.0004; no resistance to freezing; ribosomal DNA fragments of 7.2 kb and/or 11.4 kb, plus 2.2 kb and 1.8 kb present after Dra I digested DNA when probed with total T. spiralis RNA; a specific amplicon of 179 bp after polymerase chain reaction (PCR) amplification with the primer set SB147G; a specific fragment of 1,600 bp after PCR amplification with the primer set Ts43CA and Hhb I digestion; long incubation period; and moderate to severe pathogenicity for humans. The new species is most similar to T. britovi, though it differs from T. britovi in the pattern of 2 allozymes, in the patterns of major ribosomal DNA and PCR-restriction fragment length polymorphism fragments, and in geographical distribution.  相似文献   

12.
A bulk analysis of inter-simple sequence repeat-polymerase chain reaction (ISSR-PCR) provides a quick, reliable, and highly informative system for DNA banding patterns that permit species identification. The present study evaluates the applicability of this system to Trichinella species identification. After a single amplification carried out on a single larva with the primer 816([CA]nRY) under high stringency conditions, which provide high reproducibility, we were able to identify by consistent banding patterns 5 sibling species: Trichinella spiralis (ISS48), 2 Trichinella britovi isolates (ISS11 and ISS86), Trichinella murrelli (ISS35), Trichinella nativa (ISS71), Trichinella nelsoni (ISS29); 3 additional Trichinella genotypes: T8 (ISS149), T9 (ISS408 and ISS409), and T6 (ISS34); and the nonencapsulated species Trichinella pseudospiralis (ISS13). Moreover, 33 new Trichinella isolates from 2 zoogeographical regions were unequivocally identified. All Trichinella isolates have shown an identical pattern with those produced by the reference strain. According to these data, we have demonstrated that ISSR-PCR is a robust technique that emerges as a useful new application for the molecular identification of Trichinella isolates in epidemiological studies.  相似文献   

13.
The two-dimensional patterns (isoelectrofocusing-IEF/polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate-SDS) of S3 fractions of muscle larvae of four Trichinella isolates were compared. The comparative study concerned six groups of polypeptides. It was observed that the Garkavi isolate of Trichinella pseudospiralis was clearly different from the other isolates, and it showed the simplest IEF/SDS polypeptide pattern. The C-76 isolate of T. nelsoni had only four of the six groups, distinguishing it from the GM-1 isolate of T. spiralis and the Boev isolate of T. nativa that showed all the indicated groups.  相似文献   

14.
The IgG3 antibody responses to carbohydrate epitopes were compared in BALB/c mice infected or immunized with six species of Trichinella: T. spiralis (T1), T. nativa (T2), T. britovi (T3), T6, T. nelsoni (T7), and T8. The dynamics of IgG3 responses and antigen recognition following infection or immunization were measured by ELISA and Western blot respectively, using glycosylated and deglycosylated larval crude extracts (LCE) prepared from homologous isolates. A high degree of protein glycosylation was found in all species and with similar profiles. Deglycosylation was completely achieved only in LCE from T1 and T6 isolates. The dynamics of IgG3 responses following infection or immunization significantly differed whereas the antigen recognition profiles appeared similar. Variations in the levels and antigen recognition patterns of IgG3 among the different species were apparent. The highest IgG3 levels were recorded in infections by the T8 isolate and the lowest in infections by the T6 isolate, whereas for immunization the highest IgG3 response was induced by T7 and the lowest by T8. Following antigen deglycosylation, the IgG3 responses were significantly reduced or abrogated and the recognition patterns markedly modified or suppressed in the different species of Trichinella.  相似文献   

15.
Comparison of antibody response and antigen recognition was made by ELISA and western-blot analysis in pig experimental infections by T-1 and T-3 Spanish Trichinella isolates. Two groups of Iberian pigs were experimentally infected with 150 larvae/kg body weight of GM-1 and C-76 Spanish Trichinella isolates as representatives of T-1 and T-3 gene pools respectively. Antibody levels and antigen recognition were measured on days -14, 0, 6, 16, 20, 27, 34, 49, 63 and 82 after infection by ELISA and western-blotting assays. Antibody response against C-76 infection was significantly delayed and lower than against GM-1. The two Trichinella isolates were indistinguishable, however, by western blotting analysis, although recognition of larval antigens was quantitatively higher than adult ones. Interestingly, the principle larval antigenic components recognized by pigs were those recognized by the monoclonal anti-sera NIM-M1. Finally, there were no serological patterns indicative of the stage of infection ("antibody windows") discriminating, for example between early versus late infections.  相似文献   

16.
Experimental Trichinella infection in seals   总被引:2,自引:0,他引:2  
The susceptibility of seals to infection with Trichinella nativa and the cold tolerant characteristics of muscle larvae in seal meat were evaluated. Two grey seals, Halichoerus grypus, were inoculated with 5000 (100 larvae/kg) T. nativa larvae and two grey seals with 50000 (1000 larvae/kg). One seal from each dose group and two control seals were killed at 5 and 10 weeks post-inoculation (p.i.). At 5 weeks p.i., infection was established in both low and high dose seals with mean larval densities of 68 and 472 larvae per gram (lpg), respectively, using eight different muscles for analyses. At 10 weeks p.i., mean larval densities were 531 and 2649 lpg, respectively, suggesting an extended persistence of intestinal worms. In seals with high larval density infections, the distribution of larvae in various muscles was uniform, but in one seal with a low larval density infection, predilection sites of larvae included muscle groups with a relative high blood flow, i.e. diaphragm, intercostal and rear flipper muscles. Trichinella-specific antibody levels, as measured by ELISA, increased during the 10 week experimental period. Infected seal muscle was stored at 5, -5 and -18 degrees C for 1, 4 and 8 weeks. Muscle larvae released from stored seal muscle by artificial digestion were inoculated into mice to assess viability and infectivity. Larvae from seal muscle 10 weeks p.i. tolerated -18 degrees C for 8 weeks but larvae from seal muscle 5 weeks p.i. tolerated only 1 week at -18 degrees C, supporting the hypothesis that freeze tolerance increases with the age of the host-parasite tissue complex. The expressed susceptibility to infection, extended production of larvae, antibody response and freeze tolerance of T. nativa in seals are new findings from the first experimental Trichinella infection in any marine mammal and suggest that pinnipeds (phocids, otariiids or walrus) may acquire Trichinella infection by scavenging even small amounts of infected tissue left by hunters or predators.  相似文献   

17.
In West Africa, Trichinella infection was documented in humans and animals from Senegal in the 1960s, and the biological characters of one isolate showed a lower infectivity to domestic pigs and rodents when compared with that of a Trichinella spiralis pig isolate from Europe. To identify the Trichinella species present in West Africa, a survey was conducted in a total of 160 wild animals in the Republic of Guinea. Three Viverridae, one true civet (Viverra civetta) and two African palm civets (Nandinia binotata) from the Fouta Djallon Massif, Pilimini Subprefecture, were found positive by artificial digestion of muscle samples. Trichinella larvae from these three viverrids were identified as Trichinella britovi and no difference was detected in three examined sequences from these African isolates and the reference strain of T. britovi from Europe, indicating common ancestry, an historically continuous geographic distribution, and recent isolation for African and European populations. The detection of T. britovi in West Africa modifies our knowledge about the distribution of encapsulated species of Trichinella in Africa. Thus, Trichinella nelsoni is now considered to have a distribution limited to the Eastern part of the Afrotropical region from Kenya to South Africa. This provides a plausible explanation for the presence of Trichinella T8 in Namibia and South Africa, and further suggests that T. britovi could be the Trichinella species circulating among wild animals of Northern Africa.  相似文献   

18.
Genetic relationships of 20 Trichinella isolates from Indiana wildlife were assessed and compared to Trichinella isolated from an infected swine herd. Trichinella larvae were isolated from coyotes, mink, raccoons, and red foxes. The larvae were maintained and amplified in white mice (ICR) and wild mice (Peromyscus leucopus). Differences in phenotypic characters of sylvatic isolates in the 2 laboratory hosts included an approximately 10-30-fold increase in parasite fecundity in wild mice. DNA for each isolate was extracted from Trichinella larvae and analyzed by dot-blot hybridization using a repetitive DNA probe pBP2 that recognizes DNA sequences specific for swine Trichinella. The probe hybridized only to Trichinella from swine and a single coyote isolate. Restriction endonucleases were used to digest DNA and the resulting fragments were separated by gel electrophoresis. Based on the presence of repetitive DNA sequences in the Trichinella genome, distinctive banding patterns were seen among the isolates. Trichinella isolated from swine had a pattern distinct from all sylvatic isolates except 1 from a coyote. Because this coyote was from the same general locality as the swine Trichinella outbreak, it was concluded that the isolate represents transmission of swine trichinellosis to the wildlife population. Further analysis using the enzyme Cla I identified unique banding patterns for wild isolates, suggesting that the sylvatic group is a genetically heterogeneous complex.  相似文献   

19.
The infectivity of Trichinella pseudospiralis infective larvae was reduced significantly following exposure to low pH or a combination of 1% pepsin at low pH compared to that for larvae isolated in phosphate-buffered saline (PBS) at pH 7.0. Reduction of host gastric pH by administration to mice of sodium bicarbonate solution in PBS was accompanied by an increase in the infectivity of larvae isolated in 1% pepsin/HCl (P/HCl) compared to that for worms inoculated into hosts given PBS alone. Fewer adult worms developing from larvae isolated in P/HCl became established in the host small bowel than was seen with larvae isolated in PBS; moreover, the fecundity in vitro of adult worms developing from P/HCl-isolated larvae was reduced below that for adults developing from larvae isolated from host muscle in PBS. More adult worms were recovered following infection of immune hosts with PBS-isolated larvae than were recovered from immune mice challenged with larvae isolated in P/HCl. Similar findings were observed in mice immunized by infection with Trichinella spiralis and challenged with T. pseudospiralis larvae isolated in either P/HCl or PBS. Immunization of mice with T. pseudospiralis larvae isolated by either method and challenged with larvae of T. spiralis resulted in recovery of similar percentages of the challenge inoculum.  相似文献   

20.
To evaluate biological and biochemical variability in nonencapsulated Trichinella isolates, biological and allozymic studies were conducted on isolates of Trichinella collected from a raptoral bird (Aquila rapax) and a fox (Vulpes corsac) in Kazakhstan and from a dasyurid marsupial (Dasyurus maculatus) on the island of Tasmania, Australia. Allozyme profiles of bird and marsupial isolates showed close similarity with the type isolate of Trichinella pseudospiralis. The avian and fox isolates successfully interbred with the type T. pseudospiralis isolate, but they failed to interbreed with 3 encapsulating species, Trichinella spiralis, Trichinella nativa, and Trichinella britovi. The reproductive index assessed in 4 inbred and 1 outbred strains of mice was lower for the avian isolate than for the marsupial and the type T. pseudospiralis isolates (P < 0.001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号